期刊文献+

带自由变量的广义几何规划全局求解的新算法

A New Approach for Solving Global Solution of Generalized Geometric Programming with Free Variables
原文传递
导出
摘要 带自由变量的广义几何规划(FGGP)问题广泛出现在证券投资和工程设计等实际问题中.利用等价转换及对目标函数和约束函数的凸下界估计,提出一种求(FGGP)问题全局解的凸松弛方法.与已有方法相比,方法可处理符号项中含有更多变量的(FGGP)问题,且在最后形成的凸松弛问题中含有更少的变量和约束,从而在计算上更容易实现.最后数值实验表明文中方法是可行和有效的. Generalized geometric programming (FGGP) frequently in portfolio investment and engineering design problems with free variables occur By utilizing equivalent transfor marion and the convex underestilnate of the objective and constraint functions, a convex relaxation method is proposed for finding global solution of (FGGP). In comparison with the method presented, this approach can solve signomial terms with more variables of (FGGP), and the convex relaxed problem produced involves less variables and constraints, so it can be realized more easy in computation. The numerical experiments show the feasibility and efficiency of the proposed method.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第12期100-106,共7页 Mathematics in Practice and Theory
基金 河南省教育厅自然科学研究计划项目(2011B110012 12B110004)
关键词 广义几何规划 自由变量 全局解 凸松弛 generalized geometric programming free variables global solution convex re-laxation
  • 相关文献

参考文献6

  • 1申培萍,杨长森.广义几何规划的全局优化算法[J].数学物理学报(A辑),2006,26(3):382-386. 被引量:4
  • 2Qu Shaojian, Zhang Kecun, Wang Fusheng. A globa! optimization using linear relaxation for generalized geometric programming[J]. European JourliM of Operational Research, 2008, 190: 345- 356.
  • 3Li Hanlin, Tsai Jungfa. Treating free variables in generalized geometric global optimization pro- grams[J]. Journal of Global Optimization, 2005, 33:1-13.
  • 4Tsai Jungfa, Lin Minghua. Global optimization of signomial mixed-integer nonlinear programming problems with free variables[J]. Journal of Global Optimization, 2008, 42:39-49.
  • 5Li Hanlin, Tsai Jungfa. Convex underestimating for posynomial functions of positive variables. Optimization letters, 2007.
  • 6Tsai Jungfa, Lin Minghua. An optimization approach for solving signomial discrete programming problems with free variables[J]. Computers and Chemical Engineering, 2006, 30: 1256-1263.

二级参考文献5

  • 1Sherali H D, Tuncbilek C H. Comparison of two reformulation-linearization technique based linear programming relaxations for polynomial programming problems. Journal of Global Optimization, 1997, 10:381-390
  • 2Sherali H D. Global optimization of nonconvex polynomial programming problems having rational exponents. Journal of Global Optimization, 1998, 12; 267-283
  • 3Maranas C D, Floudas C A. Global optimization in generalized geometric programming. Computers Chemical Engineering, 1997, 21(4): 351-369
  • 4Shen Peiping, Zhang Kecun. Global optimization of signomial geometric programming using linear relaxation. Applied Mathematics and Computation, 2004, 150:99-114
  • 5Ron S Dembo. A set of geometric programming test problems and their solutions. Mathematical programming, 1976, 10:192-213

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部