期刊文献+

利用MicroBCA和QCM对钛薄膜表面固定纤连蛋白的量化研究与对比 被引量:2

Quantification and comparison of immobilized fibronectin by MicroBCA and QCM method on titanium-film surface
下载PDF
导出
摘要 采用物理化学稳定性较好的石英玻璃为基底,用非平衡磁控溅射技术于其表面沉积生物相容性良好的钛薄膜,然后在钛薄膜表面共价固定纤连蛋白。采用傅立叶红外光谱(FT-IR)和X射线光电子能谱(XPS)对各步处理后的材料表面特征进行检测和分析。主要研究了用MicroBCA检测法对样品表面固定的纤连蛋白的定量表征的可行性,并将该结果与用石英晶体微天平(QCM)方法检测获得的纤连蛋白量做了对比和深入分析。结果显示,纤连蛋白可以成功固定到钛薄膜表面,MicroBCA检测法和QCM法的检测结果具有一致性,样品表面纤连蛋白的固定量大约在767~789ng/cm2。 The aim of this study was to assess the feasibility of MicroBCA method in quantification of fibronectin immobilized on solid material surfaces. In this study, titanium films with favourable physiochemica] perform- ance and biocompatibility were firstly deposited onto quartz glass surfaces via unbalanced magnetron sputtering system. Then, fibronectin was covalently immobilized onto coated titanium film surface. Fourier transform in- frared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to determine the chemical composition of the surfaces at various stages of surface modification to verify the protein was successfully immo- bilized. MicroBCA protein assay method was used to determine the amount of fibronectin on sample surfaces. As comparison, the mass of immobilized protein was also detected by quartz crystal microbalance (QCM) tech- nical. The FT-IR and XPS results showed that fibronectin was successfully immobilized onto the coated titani- um film surface. The comparison results from MicroBCA and QCM measurements were consistent tendency. And the surface density of immobilized fibronectin on sample surface was approximately 767-789ng/cm2.
出处 《功能材料》 EI CAS CSCD 北大核心 2012年第13期1726-1729,1732,共5页 Journal of Functional Materials
基金 国家重点基础研究发展计划(973计划)资助项目(2011CB606204) 国家自然科学基金资助项目(31170916) 中央高校基本科研业务费专项资金资助项目(SWJTU09BR206 SWJTU09ZT28)
关键词 钛薄膜 纤连蛋白 MicroBCA QCM 定量 titanium film fibronectin MicroBCA QCM quantification assay
  • 相关文献

参考文献2

二级参考文献89

  • 1Richards J, Le N F, Beretta L, et al. Ann. N. Y. Acad. Sci., 2002, 975(1): 91-100.
  • 2Baird C L, Myszka D G. J. Mol. Recog., 2001, 14(2) : 261-268.
  • 3Szamocki R, Velichko A, Kuhn A, et al. Electrochem. Commun., 2007, 9(8): 2121-2127.
  • 4Nakanishi K, Sakiyama T, Imamura K. J. Biosci. Bioeng., 2001, 91(3) : 233-244.
  • 5Rusmini F, Zhong Z Y, Jan F. J. Biomacromol., 2007, 8(6): 1775-1789.
  • 6Rao S V, Anderson K W, Bachas L G. Microchem. Acta, 1998, 128(3/4) : 127-143.
  • 7Onda M, Lvov Y, Afiga K. J. Ferment. Bioeng., 1996, 82(5) : 502-506.
  • 8Gooding J J, Hibbert D B. Trends Anal. Chem., 1999, 18 (8): 525-563.
  • 9Shervedani R K, Abdolhamid H M. Sens. Actuators B, 2007, 126 (2) : 415-423.
  • 10ChenS F, Liu L Y, Zhou J, et al. Langmuir, 2003, 19(7): 2859-2864.

共引文献9

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部