期刊文献+

基于复合加密的自适应DCT域盲检彩色水印算法 被引量:1

Adaptive color blind watermarking algorithm based on complex encrypting and DCT transform
原文传递
导出
摘要 提出了一种基于时域和频域(整数小波域)复合加密自适应彩色水印算法,采用Logistic混沌映射和Cheby-chev混沌映射生成复合混沌序列置换像素的值,Arnold变换置乱像素的位置,并根据离散余弦变换(discrete cosinetransform,DCT)系数计算水印嵌入强度因子,设计了彩色水印的嵌入与盲检提取算法。利用Matlab7.0平台验证了该算法,实验结果表明:该算法对常见的水印攻击不仅具有较好的透明性,而且具有较强的鲁棒性。 A kind of complex encrypting adaptive color blind watermarking algorithm was proposed based on timedomain and frequencydomain(integer wavelets domaion).Pixel value was displaced by logistic chaotic mapping and Chebychev chaotic mapping to creat the complex chaotic sequence.Pixel position was scrambled by Arnold transform.The watermarking embedding intensity factor was counted by the DCT coefficient.A color watermarking embedding and blind extracting algorithm was designed.Algorithm experiments were produced by Matlab7.Experimental results showed that the algorithm had good transparency and strong robustness on the common watermarking attack.
出处 《山东大学学报(工学版)》 CAS 北大核心 2012年第3期13-17,24,共6页 Journal of Shandong University(Engineering Science)
基金 河北省教育厅自然科学基金资助项目(Z2010204)
关键词 LOGISTIC混沌序列 Chebychev混沌序列 ARNOLD变换 DCT变换 彩色水印 logistic chaotic sequence Chebychev chaotic sequence Arnold transform DCT transform color watermarking
  • 相关文献

参考文献16

二级参考文献120

共引文献216

同被引文献12

  • 1Bellifemine F, Capellino A, Chimienti A, et al. Statistical analysis of the 2 D - DCT coeffi- cients of the differential signal for images [ J ]. Signal Processing: Image Communica- tion,1992, 4(6) :477 -488.
  • 2Grossman A, Morlet J. Decomposition of Hardy functions into square integral wavelets of con- stant shape [ J ]. Signal Processing, 1984,52 (3) :375 -383.
  • 3Kundur D, Hatzinakos D. Digital watermarking using muhiresolution wavelet decomposition [ J ]. Proceedings of the International Confer- ence on Acoustic, Speech and Signal Process- ing, 1998,5:2969 -2972.
  • 4Davoine F. Comparison of two wavelet based image watemarking schemes [ J ]. Proceedings of IEEE International Conference on Image Processing, 2000,3 : 682 - 685.
  • 5Chert L H, J J Lin. Mean quantization based image watermarking [ J ]. Image and Vision Computing, 2003 (21) : 717 -727.
  • 6Meyer Y. Wavelets and applications [ J ]. Pro- ceedings of International Conference Mar- seille,2011,231 - 239.
  • 7Do M N, Vetterli M. Contourlet: a computa- tional framework for directional muhiresolution image representation [ J ]. IEEE Trans. on Im- age Processing, 2006,16 ( 12 ) : 706 - 7i 2.
  • 8Candes E J. Ridgelets: Theory and applica- tions [ D ]. Thesis, Department of Statistics, Stanford University, 1998.
  • 9Katzenbeisser S, Petitcolas F. Information hid- ing techniques for steganography and digital watermarking [ M ]. Northwood : Artec House, 1999:97 - 115.
  • 10曾凡娟,周安民.基于Contourlet变换和奇异值分解的图像零水印算法[J].计算机应用,2008,28(8):2033-2035. 被引量:17

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部