期刊文献+

图割模型在卫星云图云检测中的应用 被引量:5

Application of graph cut method in cloud detection in satellite cloud image
下载PDF
导出
摘要 提出一种基于图割模型的卫星云图云检测方法。利用FY-2C卫星云图的长波红外通道和可见光通道的云图提取了10个灰度特征和80个Gabor纹理特征,再用主成分分析方法(principal component analysis,PCA)降维到9个主成分。将这9个主成分构成的特征作为每个像素的特征,建立相似度矩阵,再利用改进的Normalized Cuts模型进行分割,将云图分成了晴空区域和有云区域。与地面观测结果相比,平均一致率达到86.51%,表明将Gabor纹理特征和灰度特征相结合并利用改进的Normalized Cuts模型对卫星云图云检测有比较好的效果。 A novel approach is proposed for cloud detection in satellite cloud image based on the im- proved Graph Cuts Model. 10 gray features and 80 Gabor texture features were selected from two chan-nels of FY-2C satellite image( infrared channel 1 and visible light channel), and the dimensions of fea-ture vector were reduced to 9 by using PCA (principal component analysis). Then the similarity matrix was built up by those feature vectors. By using the spectral graph theoretic framework of Normalized Cuts, the cloud image was divided into 2 parts, the clear sky and the cloudy sky. Compared with the re-sult of surface observation, the average consistency was 86.51%. The results demonstrate that this method is effective in cloud detection.
出处 《大气科学学报》 CSCD 北大核心 2012年第4期502-507,共6页 Transactions of Atmospheric Sciences
基金 国家自然科学基金资助项目(60802039 61071146)
关键词 Normalized CUTS 图像分割 GABOR纹理特征 云检测 Normalized Cuts image segmentation Gabor texture feature cloud detection
  • 相关文献

参考文献13

二级参考文献61

  • 1王耀生,王燕,冯晓娟,师春香.卫星云图的计算机分析识别[J].气象,1994,20(6):24-32. 被引量:9
  • 2Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. International Journal of Computer Vision, 1988, 1(4):321-331.
  • 3Adobe Systems Incorporation. Using Adobe Photoshop cs4 [OL]. [2009-03-09]. http://help. adobe. com/en_US/ Photoshop/11.0/index. html.
  • 4Vezhnevets V, Konouchine V. "Growcut "-interactive multi-label N D image segmentation by cellular automata [OL]. [2009-03-09]. http://www. graphicon. ru/2005/ proceedings/papers/VezhntvetsKonushin. pdf.
  • 5Grady L. Random walks for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 31768-1783.
  • 6Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N D images [C]//Proceedings of International Conference on Computer Vision, Vancouver, 2001, 1:105-112.
  • 7Rother C, Kolmogorov V, Blake A. "Grabcut"-interactive foreground extraction using iterated graph cuts [J]. ACM Transactions on Graphics, 2004, 23(3): 309-314.
  • 8Li Y, Sun J, Tang C K, et al. Lazy Snapping [C] // Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2004: 303-308.
  • 9Boykov Y, Kolmogorov V. An experimental comparison of rain cut/max-flow algorithms for energy minimization in vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137.
  • 10Kohli P, Torr P H S. Dynamic graph cuts for efficient inference in Markov random fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (12): 2079-2088.

共引文献75

同被引文献60

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部