期刊文献+

耿方程的Painlevé性质、Bcklund变换及其精确解

Painlevé Property,Bcklund Transformation and Exact Solutions to Geng Equation
下载PDF
导出
摘要 利用Painlevé分析的WTC方法,验证了耿方程具有Painlevé性质并给出其自Bcklund变换.通过Painlevé截断展开法,给出双曲函数型与三角函数型的孤立波解、定态解和有理解. The Geng equation is proved to have Painleve property and the auto-Backlund transforma- tion is obtained. The hyperbolic and triangular function type solitary wave solutions, steady state solutions and rational solutions of Geng equation are also presented by use of the truncated Painleve expansion method.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2012年第3期223-226,230,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10461006) 内蒙古师范大学"十百千"人才培养工程项目
关键词 Painlevé性质 WTC方法 BACKLUND变换 精确解 Painleve property WTC method Backlund transformation exact solution
  • 相关文献

参考文献5

  • 1Geng Xianguo. Four new hierarchies of nonlinear evolution equations [J]. Phys Lett A, 1990,147 (8/9) : 491-494.
  • 2Gudkov V V. A family of exact travelling wave solutions to nonlinear evolution and wave equations [J]. J Math Phys, 1997,38(9) : 4794-4803.
  • 3Olver P J. Evolution equations possessing infinitely many symmetries [J].J Math Phys 1977,18(6) :1212-1215.
  • 4Weiss J,Tabor M,Carnevale G. The painlev6 property for partial differential equations [J]. J Math Phys, 1983,24 (3) : 522-526.
  • 5Weiss J. The painlev property for partial differential equations Ⅱ :B/icklund transformation,Lax pairs,and the Schwarzi- an derivative [J]. J Math Phys,1983,24(3) :1405-1413.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部