期刊文献+

负顾客及反馈的Geo/Geo/1多重工作休假排队系统的稳态队长分布 被引量:2

Equilibrium distributions of the queue length in Geo/Geo/1 queue system with negative customer,feedback and multiple working vacations
原文传递
导出
摘要 综合利用离散补充变量法、矩阵几何解及拟生灭链的方法研究了带有负顾客及伯努利反馈的Geo/Geo/1多重工作休假排队系统.首先运用离散补充变量方法得到了此复杂系统的转移概率矩阵.其次.再利用矩阵几何解及拟生灭链的技术通过解方程组获得了队长的稳态分布、平均队长及稳态队长的随机分解结果.最后.通过引入数值例子,作出了系统的二维图形.进而可以更直观地分析一些参数对系统性能的影响. Applying the discrete supplementary variables method, matrix-geomertic solution and quasibirth-death technique, we investigate a discrete time Geo/Geo/1 queue system with negative customer, Bernoulli feedback and multiple working vacations. Firstly, by applying the discrete supplementary variable technique, we give the transition probability matrix of this complex system. Secondly, using the matrix-geometric solution and quasi birth-death technique and solving equation sets, we get the equilibrium distributions for the number of customers, the average number of customers and the stochastic decomposition of the steady-state queue length. Finally, by presenting the numerical examples, we make some two-dimensinal graphs, which help us to intuitively analyze the influence of parameters on the system performance.
机构地区 江苏大学理学院
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2012年第7期1494-1500,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70571030 10571076)
关键词 离散时间排队 负顾客 反馈 拟生灭链 随机分解 discrete-time queue negative customer feedback quasi birth-death chain stochastic decomposition
  • 相关文献

参考文献10

二级参考文献37

  • 1Doshi B T. Queueing systems with vacations - A survey[J]. Queueing System, 1986, 1(1): 29-66.
  • 2Takagi H. Queueing Analysis - A Foundation of Performance Evaluation, Vol.1 Vacation and Priority Systems[M]. Amsterdam: North-Holland, 1991.
  • 3Servi L D, Finn S G. M/M/1 queue with working vacations (M/M/1/WV)[J]. Performance Evaluation, 2002, 50(1): 41-52.
  • 4Wu D A, Takagi H. M/G/1 queue with multiple working vacations[J]. Performance Evaluation, 2006, 63(7): 654-681.
  • 5Baba Y. Analysis of a GI/M/1 queue with multiple working vacations[J]. Operation Research Letters, 2005, 33(2): 201-209.
  • 6Banik A D, Gupta U C, Pathak S S. On the GI/M/1/N queue with multiple working vacations - analytic analysis and computation[J]. Applied Mathematical Modelling, 2007, 31(9): 1701-1710.
  • 7Li J H, Tian N S. The discrete-time GI/Geom/1 queue with working vacations and vacation interruption [J]. Applied Mathematics and Computation, 2007, 185 (1): 1-10.
  • 8Hunter J J. Mathematical Techniques of Applied Probability, Vol. Ⅱ, Discrete Time Models: Techniques and Applications[M]. New York: Academic Press, 1983.
  • 9孟玉珂.排队论基础及应用[M].上海:同济大学出版社,1988.
  • 10Neuts M. Matrix-geometric Solutions in Stochastic Models[M]. Johns Hopkins University Press, Baltimore 1981.

共引文献26

同被引文献8

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部