摘要
综合利用离散补充变量法、矩阵几何解及拟生灭链的方法研究了带有负顾客及伯努利反馈的Geo/Geo/1多重工作休假排队系统.首先运用离散补充变量方法得到了此复杂系统的转移概率矩阵.其次.再利用矩阵几何解及拟生灭链的技术通过解方程组获得了队长的稳态分布、平均队长及稳态队长的随机分解结果.最后.通过引入数值例子,作出了系统的二维图形.进而可以更直观地分析一些参数对系统性能的影响.
Applying the discrete supplementary variables method, matrix-geomertic solution and quasibirth-death technique, we investigate a discrete time Geo/Geo/1 queue system with negative customer, Bernoulli feedback and multiple working vacations. Firstly, by applying the discrete supplementary variable technique, we give the transition probability matrix of this complex system. Secondly, using the matrix-geometric solution and quasi birth-death technique and solving equation sets, we get the equilibrium distributions for the number of customers, the average number of customers and the stochastic decomposition of the steady-state queue length. Finally, by presenting the numerical examples, we make some two-dimensinal graphs, which help us to intuitively analyze the influence of parameters on the system performance.
出处
《系统工程理论与实践》
EI
CSSCI
CSCD
北大核心
2012年第7期1494-1500,共7页
Systems Engineering-Theory & Practice
基金
国家自然科学基金(70571030
10571076)
关键词
离散时间排队
负顾客
反馈
拟生灭链
随机分解
discrete-time queue
negative customer
feedback
quasi birth-death chain
stochastic decomposition