期刊文献+

股骨假体热应力有限元分析 被引量:2

Finite element analysis of thermal stress of femoral prosthesis
下载PDF
导出
摘要 为定量研究材料热物性对股骨-假体系统应力的影响,以热弹性力学为基础,利用有限元方法对髋关节置换后股骨-假体系统的应力进行分析.假设假体、骨水泥、股骨为线弹性和各向同性材料且完全结合的同心圆柱体,经力学分析和有限元仿真,分别求得钛合金和钴铬合金作为假体材料时考虑热效应前后的假体/骨水泥、骨水泥/股骨随轴向位置分布的界面剪切应力以及假体、骨水泥、股骨的轴向应力.结果表明:界面失效是股骨-假体系统的主要失效形式,热效应使界面产生了混合而不是纯剪切的失效形式,加快了股骨-假体系统的界面失效,加速了假体柄的松动;由于钴铬合金的热膨胀系数大于钛合金,钴铬合金作为假体材料时更易引起界面失效,导致手术失败.选择热膨胀系数小的假体材料,可以减小界面失效的可能性,提高手术成功率. To study the influence of thermo property on stress of femur-prosthesis system quantitatively,the finite element method is used to analyze the stress of femur-prosthesis system when the hip joint has been replaced,in which the prosthesis,bone cement and femur are assumed as linear elastic and isotropic materials in shape of a concentric cylinder.Considering the thermal effect,the axial stress of prosthesis,bone cement,femur and the interface shear stress along axial of the prosthesis/bone cement and bone cement/femur when the prosthesis are made of titanium alloy and cobalt-chromium alloy are acquired separately by mechanical analysis and FEM simulation.The results indicate that the interface failure is the primary failure mode of the femur-prosthesis system.The existence of thermal effect accelerates the interface failure of femur-prosthesis system and the loose of prosthesis stem.The possibility of interface failure which result in operation failure will ascend when the cobalt-chromium alloy is used,because the thermal expansion coefficient of cobalt-chromium alloys is higher than that of titanium alloy.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第7期38-42,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(61073144) 黑龙江省新世纪优秀人才培养计划资助项目(251NCET006) 机器人技术与系统国家重点实验室开放研究资助项目
关键词 股骨 假体 钛合金假体 钴铬合金假体 热应力 有限元分析 femur prosthesis titanium prosthesis cobalt-chromium prosthesis thermal stress finite element analysis
  • 相关文献

参考文献6

二级参考文献81

共引文献32

同被引文献45

  • 1李正东,刘宁国,黄平,邵煜,黄伟华,万雷,邹冬华,陈忆九.下肢有限元模型的建立及损伤机制重建[J].中国司法鉴定,2012(6):37-42. 被引量:7
  • 2万磊,李义凯,原林,李奇,杨建成,钟世镇.基于中国数字人CT数据重建膝关节有限元模型[J].中国骨与关节损伤杂志,2006,21(4):271-273. 被引量:15
  • 3Helwig P, Hindenlang U, Hirschmuller, et al. A femoral model with all relevant muscles and hip capsule ligaments. Comput Methods Biomech Biomed Engin. 2013;16(6): 669-677.
  • 4Latifi MH, Ganthel K, Rukmanikanthan S, et aL Prospects of implant with locking plate in fixation of subtrochanteric fracture: experimental demonstration of its potential benefits on synthetic femur model with supportive hierarchical nonlinear hyperelastic finite element analysis. Biomed Eng Online. 2012;11: 23.
  • 5Orwoll ES, Marshall LM, Nielson CM, et al. Finite element analysis of the proximalfemur and hip fracture risk in older men J Bone Miner Resl 2009;24(3):475-483.
  • 6Amin S, Kopperdhal DL, Melton LJ 3rd, et al. Association of hip strength estimates by finite-element analysis with fractures in women and men. J Bone Miner Res. 2011 ;26(7): 1593-1600.
  • 7Cooper C, Cole ZA, Holroyd CR, et al. Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int. 2011 ;22(5): 1277-1288.
  • 8Alexander GE 3rd, Gutierrez S, NavakA, et al. Biomechanical model of a high risk impending pathologic fracture of the femur: lesion creation based on clinically implemented scoring systems. Clin Biomech. 2013;28(4): 408-414.
  • 9Koivum~ki JE, Thevenot J, Pulkkinen P, et al. Cortical bone finite element models in the estimation of experimentally measured failure loads in the proximal femur. Bone. 2012;51 (4):737-740.
  • 10Rawal BR, Bhatnagar N. An investigation on the effect of groove geometry on cementless femoral stem component in hip arthroplasty. Pak J Biol Sci. 2013;16(24):2073-2075.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部