期刊文献+

基于CV模型的SAR图像机场感兴趣区域检测 被引量:4

Detection of Airport ROI in SAR Image Based on CV Model
下载PDF
导出
摘要 高分辨率POLSAR图像的机场感兴趣区域(Region of interest,ROI)的自动提取是自动目标识别(AutomaticTarget Recognition,ATR)系统的任务之一,也是准确识别分类飞机等小目标的基础。针对全极化合成孔径雷达(POLSAR)图像极化相干的特点,提出一种融合提取方法:先使用J.S.Lee Sigma filter滤波,再利用Shannon-Entropy理论提高ROI和背景对比度,采用基于CV模型的方法分割图像,然后对分割得到的图像进行形态学等图像处理,最终得到机场ROI。实验结果表明,该方法具有分割界限清晰、定位准确的优点。 Automatic detection of the airport as the region of interest(ROI) from the high resolution POLSAR image is one of tasks of Automatic Target Recognition (ATR) systems as well as the foundation of airplane detection. Considering the coherent polarimetric property of the POLSAR image,a new combined extraction algorithm is proposed. The image enhancement method based on Shannon- Entropy theory is firstly applied on the T3 matrix filtered by J. S. Lee sigma filter to improve the contrast between the ROI and the back- ground, and then the CV model is used to track the contour of the ROI ,finally the airport ROI is obtained after the morphologie processing. Experiment with actual data indicates the algorithm is effective in segmenting the image and obtaining the proper airport ROI.
作者 潘诚 戴晓燕
机构地区 复旦大学
出处 《无线电工程》 2012年第7期10-12,28,共4页 Radio Engineering
基金 中央高校基本科研业务费专项奖金资助项目:地理信息科学教育部重点实验室开放研究基金资助项目(KLGIS2011A12)
关键词 感兴趣区域 高分辨率合成孔径雷达图像 Shannon-Entropy理论 CV模型 region of interest high resolution Synthetic Aperture Radar(SAR)image Shannon-Entropy theory CV model
  • 相关文献

参考文献8

二级参考文献48

  • 1何勇,徐新,孙洪,杨文.机载SAR图像中机场跑道的检测[J].武汉大学学报(理学版),2004,50(3):393-396. 被引量:15
  • 2鲍复民,李爱国,覃征.合成孔径雷达图像中机场跑道的自动识别[J].西安交通大学学报,2004,38(12):1243-1246. 被引量:11
  • 3徐旦华,鲍旭东,舒华忠.基于区域划分和改进C-V法的医学图像分割方法[J].东南大学学报(自然科学版),2006,36(5):863-868. 被引量:7
  • 4OSHER S,SETHIAN J A.Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulation[J].Journal of Computation Physics,1988,79:12-49.
  • 5OSHER S,FEDKIW R.Level set methods and dynamic implicit surfaces[M].New York:Springer-Verlag,2003:47-54.
  • 6ROUSSON M,DERICHE R.A variational framework for active and adaptive segmentation of vector valued images[C]//Proceedings of IEEE Workshop on Motion and Video Computing,Orlando,Florida,USA,2002:56-61.
  • 7CHAN T,VESE L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 8JIANG Jianguo,Guo Yanrong,ZHAN Shu.Segmentation of knee joints based on improved multiphase ChanVese model[C]//2nd International Conference on Bioinformatics and Biomedical Engineering,ICBBE,2008:2418-2422.
  • 9CAO Guo,MAO Zhihong,YANG Xin.Optical aerial image partitioning using level sets based on modified Chan-Vese model[J].Pattern Recognition Letters,2008,29(4):457-464.
  • 10XU Huan,WANG Xiaofeng.Automated segmentation using a fast implementation of the chan-vese models[J].Lecture Notes in Computer Science,2008,5227:1135-1141.

共引文献37

同被引文献21

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部