摘要
提出一类高阶Bent函数的构造方法,将级联后的Bent序列转化为矩阵形式,对矩阵作任意行列置换,得到一类新的Bent序列,根据Bent序列的性质,对2个已知的n元Bent函数进行Kronecker积运算,由此构造一个2n元的Bent函数,同理对m个n元Bent函数进行Kronecker积运算,构造mn元高阶Bent函数,并对构造的mn元Bent函数进行矩阵变换,得到数量更多的高阶Bent函数。
A construction method of high-rank Bent function is researched in this article. By translating the cascading Bent sequence into the matrices and using the random cortege permutation to change the matrices, a kind of new Bent sequences are achieved. According to the properties of Bent sequence, a new Bent function witb 2n-variables is constructed from two known n-variables Bent functions by the method of Kronecker product operation. Extend the conclusion, a new Bent function with mn-variables is constructed from m known n-variables Bent functions via the Kronecker product operation. And much more high-rank Bent sequences are got through matrix transformation of the ran-variables Bent function.
出处
《计算机工程》
CAS
CSCD
2012年第14期122-123,131,共3页
Computer Engineering
基金
国家自然科学基金资助项目(61103230)
武警工程学院基金资助项目(wjy201119)