期刊文献+

一类高阶Bent函数的构造方法 被引量:1

Construction Method of A Class of High-rank Bent Function
下载PDF
导出
摘要 提出一类高阶Bent函数的构造方法,将级联后的Bent序列转化为矩阵形式,对矩阵作任意行列置换,得到一类新的Bent序列,根据Bent序列的性质,对2个已知的n元Bent函数进行Kronecker积运算,由此构造一个2n元的Bent函数,同理对m个n元Bent函数进行Kronecker积运算,构造mn元高阶Bent函数,并对构造的mn元Bent函数进行矩阵变换,得到数量更多的高阶Bent函数。 A construction method of high-rank Bent function is researched in this article. By translating the cascading Bent sequence into the matrices and using the random cortege permutation to change the matrices, a kind of new Bent sequences are achieved. According to the properties of Bent sequence, a new Bent function witb 2n-variables is constructed from two known n-variables Bent functions by the method of Kronecker product operation. Extend the conclusion, a new Bent function with mn-variables is constructed from m known n-variables Bent functions via the Kronecker product operation. And much more high-rank Bent sequences are got through matrix transformation of the ran-variables Bent function.
出处 《计算机工程》 CAS CSCD 2012年第14期122-123,131,共3页 Computer Engineering
基金 国家自然科学基金资助项目(61103230) 武警工程学院基金资助项目(wjy201119)
关键词 密码学 布尔函数 级联Bent函数 矩阵变换 Kronecker积运算 高阶Bent函数 cryptography Boolean function cascading Bent function matrix transformation Kronecker product operation high-rank Bent function
  • 相关文献

参考文献8

二级参考文献27

  • 1Zheng Yuliang, Zhang Xianmu. On Plateaued Function[J]. 1EEE Transactions on Information Theory, 2001, 47(3): 1215-1223.
  • 2Rothaus O S. On "Bent" Functions[J]. Journal of Combinatorial Theory, 1976, 20(1): 300-305.
  • 3Carlet C. Partially-bent Function[C]//Proc. of CRYPTO'93. Berlin, Germany: Springer-Verlag, 1993:280-291.
  • 4Satoh T, Wata T, Kursawa K. On Cryptographically Secure Vectorial Boolean Functions[C]//Proc. of ASIACRYPT'99. Berlin, Germany: Springer-Verlag, 1999: 62-74.
  • 5Nyberg K. Perfect Nonlinear S-boxed[C]//Proc. of Eurocrypt'91. Berlin, Germany: Springer-Verlag, 1991: 378-383.
  • 6张文英 滕吉红 李世取.布尔函数的谱分解式及其在多维Bent函数构造中的应用[A]..第三届中国信息和通信安全学术会议论文集CClCS[C].北京:科学出版社,2003.290-296.
  • 7Rothaus O S. On bent functions[J]. J. Combinatorial Theory, 1976,20A(1) :300-305.
  • 8Kaisa Nyberg. Perfect nonlinear S-boxed[A]. Advances in Crytology-Eurocrypt'91[C]. Berlin: Springer-Verlag, 1992,378-383.
  • 9Satoh T,Wata T, Kursawa K. On cryptographically secure vectorial boolean functions[A]. Proceedings of ASIACRYPT'99[C]. Berlin: Springer-Verlag, 1999,62-74.
  • 10Williams F J MAC,Slone N J A. The theory of error correcting codes[M].Amsterdam: North Holland,1977.

共引文献14

同被引文献14

  • 1柯品惠,常祖领,温巧燕.关于GF(q)上的完全非线性函数和广义Bent函数[J].北京邮电大学学报,2006,29(3):110-113. 被引量:3
  • 2Rothaus O S.On“Bent”Functions[J].Journal of Combinatorial Theory,Series A,1976,20(3):300-305.
  • 3Kumar P V,Scholtz R A,Welc L R.Generalized Bent Functions and Their Properties[J].Journal of Combinatorial Theory,Series A,1985,40(1):90-107.
  • 4Nyberg K.Constructions of Bent Functions and Difference Sets[C]//Proceedings of EUROCRYPT’90.Berlin,Germany:Springer-Verlag,1990:151-160.
  • 5Carlet C.Two New Classes of Bent Functions[C]//Proceedings of EUROCRYPT’93.Berlin,Germany:Springer-Verlag,1994:77-101.
  • 6Singh D,Bhaintwal M,Singh B K.Some Results on q-ary Bent Functions[J].International Journal of Computer Mathematics,2013,90(9):1761-1773.
  • 7Sarkar P,Maitra S.Cross-correlation Analysis of Cryptographically Useful Boolean Functions and Sboxes[J].Theory Computer Systems,2002,35(1):39-57.
  • 8Zhou Yu,Xie Min,Xiao Guozhen.On the Global Avalanche Characteristics Between Two Boolean Functions and the Higher Order Nonlinearity[J].Information Science,2010,180(2):256-265.
  • 9申艳光,刘永红,江涛.n元Bent函数的级联构造[J].计算机工程,2011,37(4):125-127. 被引量:3
  • 10ZHUO Zepeng,ZHANG Weiguo,GAO Sheng,XIAO Guozhen.On Correlation Properties of Boolean Functions[J].Chinese Journal of Electronics,2011,20(1):143-146. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部