期刊文献+

基于Fisher准则的SVM参数选择算法 被引量:7

A SVM parameters selection algorithm based on Fisher criterion
原文传递
导出
摘要 支持向量机(support vector machine,SVM)分类性能主要受到SVM模型选择(包括核函数的选择和参数的选取)的影响,目前SVM模型参数选择的方法并不能较好地确定模型参数。为此基于Fisher准则提出了SVM参数选择算法。该算法利用样本在特征空间中的类别间的线性可分离性,结合梯度下降算法进行参数寻优,并基于Matlab实现选择算法。实验结果表明参数选择算法既提高了SVM训练性能,又大大减少了训练时间。 SVM (support vector machine) classification performance is mainly influenced by the SVM model selection ( including the choice of the kernel function and parameters selected). It is not better to determine the SVM model pa- rameters by the existing methods of SVM model parameter selection. Therefore a SVM parameter selection algorithm is presented based on the Fisher criterion. The selection algorithm makes full use of the samples of linear separability in the classes in the feature space, and combines with the gradient descent algorithm for parameter optimization. It is realized by Matlab. The experimental results show that this parameter selection algorithm not only improves the training performance of SVM, but also greatly reduces the training time through the simulation.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第7期50-54,69,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(60972139) 中央高校基本科研业务费专项资金资助项目(YZDJ1105)
关键词 核函数 支持向量机 FISHER准则 梯度下降算法 kernel function SVM Fisher criterion gradient descent algorithm
  • 相关文献

参考文献3

  • 1Ge Yong Department of Earth and Atmospheric Science, York University, Toronto, ON, M3J 1P3, Canada,State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China Cheng Qiuming Department of Earth and Atmospheric Science, York University, Toronto, ON, M3J 1P3, Canada,Earth Systems and Mineral Resource Engineering Lab, China University of Geosciences, Wuhan 430074, China Zhang Shenyuan Department of Earth and Atmospheric Science, York University, Toronto, ON, M3J 1P3, Canada,Department of Resource and Earth Science, China University of Mining & Technology, Beijing 100083, China.Edge Effect Correction in the S-A Method for Geochemical Anomaly Separation[J].Journal of China University of Geosciences,2004,15(4):379-387. 被引量:31
  • 2王睿.关于支持向量机参数选择方法分析[J].重庆师范大学学报(自然科学版),2007,24(2):36-38. 被引量:39
  • 3付阳,李昆仑.支持向量机模型参数选择方法综述[J].电脑知识与技术,2010,6(10):8081-8082. 被引量:26

二级参考文献16

  • 1董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120. 被引量:65
  • 2姬水旺,姬旺田.支持向量机训练算法的实验比较[J].计算机应用研究,2004,21(11):18-20. 被引量:5
  • 3Vapnik V.Statistical learning theory[M].New York:1995.
  • 4Chapelle O, Vapnik V, Bousquet O, et al.Choosing Multiple Parameters for Support Machines [J]. Machine Learning,2002,46 (3):131- 159.
  • 5Hsu C W. Chang C C, Lin C J. A practical guide to support vector classification [R]. University of National Taiwan, Department of Computer Science and Information Engineering, 2003:1-12.
  • 6YAN X F, CHEN D Z, HU S X. Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS Model[J].Computers and Chemical Engineering,2003,27(12):1393-140d.
  • 7ZHENG Chunhong,JIAO Licheng.Automatic parameters selection for SVM based on GA [C].Proc of the 5th World Congress on Intelligent Control and Automation. Piscataway ,N J: IEEE Press,2004:1869-1872.
  • 8Tsair-Fwu Lee, Ming-Yuan Cho, Chin-Shiuh Shieh, Fu-Min Fang. Particle Swarm Optimization-Based SVM Application: Power Transformers Incipient Fault Syndrome Diagnosis[C]. International Conference on Hybrid Information Technology,2006:468-472.
  • 9Huang Ch L, Wang Ch J. A GA-based feature selection and parameters optimization for support vector machines[J].Expert Systems with Applications,2006,31:231-240.
  • 10Shih-Wei Lin, Kuo-Ching Ying, Shih-Chieh Chen, et al. Particle swarm optimization for parameter determination and feature selection of support vector machines[J]. Expert Systems with Applications,2008(35):1817-1824.

共引文献93

同被引文献62

引证文献7

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部