期刊文献+

基于主动视觉的运动目标检测跟踪方法 被引量:3

Moving Object Detection and Tracking Method Based on Active Vision
下载PDF
导出
摘要 研究主动视觉运动目标检测跟踪系统。针对图像目标跟踪多为非连续动态过程,准确性差,通过混合高斯法建立背景模型,采用背景差分法,利用最大类间方差算法确定阈值,检测分割出运动目标,提出一种结合SURF算法的带宽自适应均值漂移跟踪算法实现目标跟踪,使用线程并行控制摄像机运动,确保跟踪目标在图像序列中的合适尺寸。实验表明,改进系统能够实现对场景中运动目标的准确检测,稳定跟踪,并能到达实时应用的要求。 In this paper we designed an active vision system for detecting and tracking moving object based on FFZ. For the object segmentation step we used the background difference method. Background model was established by mixture Gaussian algorithm, and Otsu algorithm was used to determine the threshold. We presented a new meanshift algorithm to track. The bandwidth was adapted by SURF algorithm. The movement of camera was controlled by thread parallel technology to make sure to track the target in a suitable image size. Experiment shows that the system not only can detect the object exactly, but also is robust for tracking, and can reach the requirements of real-time ap- plications.
出处 《计算机仿真》 CSCD 北大核心 2012年第7期278-281,291,共5页 Computer Simulation
基金 浙江省自然科学基金(Y1080533)
关键词 主动视觉 混合高斯模型 均值漂移算法 目标检测跟踪 Active vision Gaussian mixture model Mean-shift Object detection and tracking
  • 相关文献

参考文献7

  • 1K P Karmann, AVon Brandt. Moving object recognition using an adaptive background memory[ J]. Time-varying image processing and moving object recognition, 1990,2( 1 ) : 289-296.
  • 2C Stauffer, W E L Grimson. Adaptive background mixture models for real-time tracking[ C]. Proceedings 1999 IEEE Computer So- ciety Conference on Computer Vision and Pattern Recognition,Washington, D.C., USA: IEEE Computer Society, 1999: 246- 252.
  • 3彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 4K Bitsakos, C Ferm, Ller, Y Aloimonos. An experimental study of color-based segmentation algorithms based on the mean-shift con- cept[ C]. Proceedings of the llth European conference on Com- puter vision: Part II, New York, USA: Springer-Verlag, 2010: 506-519.
  • 5L Juan, O Gwun. A Comparison of SIFT, PCA-SIFT and SURF [J]. International Journal of Image Processing (HIP) , 2010,3 (4) :143.
  • 6刘晓辉,陈小平.基于扩展卡尔曼滤波的主动视觉跟踪技术[J].计算机辅助工程,2007,16(2):32-37. 被引量:10
  • 7郝志成,朱明.智能目标检测与跟踪系统的设计与实现[J].光电工程,2007,34(1):27-31. 被引量:16

二级参考文献30

  • 1张天序,戴可荣,彭嘉雄.复杂图象序列的自适应目标提取和跟踪方法[J].电子学报,1994,22(10):46-53. 被引量:15
  • 2陈小平.国际机器人足球(Robocup)最新进展.机器人技术与应用,2001,1:25-28.
  • 3[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 4[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 5[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 6[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 7[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.
  • 8[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575.
  • 9[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240.
  • 10[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857.

共引文献186

同被引文献30

  • 1世界卫生组织(wH0)人类精液检查与处理实验室手册[M].第5版.北京:人民卫生出版社,2011.
  • 2Tomlinson M J, Pooley K, Simpson T, et al. Validation of a novel computer-assisted sperm analysis (CASA) system using multitarget-tracking algorithms[J ]. Fertility and Sterility, 2010, 93(6) : 1911-1920.
  • 3Biomedical Engineering. Low contrast sperm detection and tracking by Watershed algorithm and Particle filterECl Tehran: Ravanfar, M. R. ; Moradi, M. H, 2011.
  • 4Dornaika F, Chakik F. Efficient object detection and tracking in video sequencesEJl. Journal of the Optical Society of America A, Optics, Image Science and Vision, 2012, 29(6) : 928-935.
  • 5世界卫生组织(WHO)人类精液检查与处理实验室手册(第5版).北京:人民卫生出版社,2011.
  • 6Tomlinson M J,Pooley K,Simpson T,et al.Validation of a novel computer-assisted sperm analysis (CASA) system using multitarget-tracking algorithms.Fertility and Sterility,2010 ;93 (6):1911-1920.
  • 7Biomedical Engineering.Low contrast sperm detection and tracking by Watershed algorithm and Particle filter.18th Iranian Conference of Biomedical Engineering (ICBME).Tehran:Ravanfar M R Moradi M H,2011.
  • 8Dornaika F,Chakik F.Efficient object detection and tracking in video sequences.J Opt Soc Am A Opt Image Sci Vis,2012;29(6):928-935.
  • 9蔡俊林.医学图像中多目标检测与跟踪技术研究.广州:华南理工大学,2012.
  • 10廖兴勇.基于多阈值分割的精子运动视频的改进多目标跟踪.广州:华南理工大学,2012.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部