期刊文献+

基于多级分类的极化SAR图像斑点抑制 被引量:2

PolSAR image speckle reduction based on multi-stage classification
下载PDF
导出
摘要 针对极化合成孔径雷达(polarimetric synthetic aperture radar,PolSAR)图像相干斑抑制后的目标极化特性和结构特征保持问题,给出了一种多级分类的极化SAR图像斑点抑制方法。首先利用H/α快速分解法并结合极化总功率图像进行初分类,之后采用最小距离准则和聚合的层次聚类方法进行细分类,最后根据图像结构将图像内容分为亮点线目标、暗线目标和其他目标三大类,利用线性最小均方滤波器对暗线目标和非点线目标进行滤波。采用美国AIRSAR机载系统获取的实测数据进行实验,结果表明,与Lee的基于散射模型降斑算法相比,本文算法不仅能够更有效地抑制斑点噪声,而且在保持极化特性、结构和纹理特征方面更为有效。 On account of the scattering properties and target structure feature maintaining in polarimetric synthetic aperture radar (PolSAR) images after speckle suppressing, an effective algorithm for speckle reduc- tion based on multi-stage classification is developed. First, the fast alternative to H/a is used in PolSAR image decomposition and the total back-scattering power is combined for initial pixel classification. Then minimum dis- tance measure and hierarchical cluster method are used in the second stage classification. Finally, all pixels in the image are divided into three classes which are bright point or curve-linear targets, dark curve-linear targets, and other targets. The second and third kinds of targets are filtered by the linear minimize mean square filter (MMSE). Experimental results with AIRSAR data show that the new algorithm is more effective than Scatter- ing-Model-Based speckle filter developed by Lee not only in speckle reduction but also in polarimetric properties and structure feature preservation.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第7期1360-1365,共6页 Systems Engineering and Electronics
基金 国家自然科学基金与中国民用航空局联合项目(60979002) 中国民航大学科研启动基金(2010QD03S) 中国民航大学校内科研基金(09CAUC_E10)资助课题
关键词 极化合成孔径雷达 斑点抑制 H/α快速分类 极化分解 多级分类 polarimetrie synthetic aperture radar speckle reduction fast alternative to H/a polarimetrie decomposition multi-stage classification
  • 相关文献

参考文献10

  • 1Lukowski T, Khellah F, Charbonneau F, et al. Synthetic aper- ture radar for search and rescue: evaluation of advanced capabili- ties in preparation for RADARSAT 2[C]//Proc. of the SPIE Conference on Automatic Target Recognition , 2002, 4726: 343 - 352.
  • 2章涛,韩萍,王晓亮,等.基于Yamaguchi极化分解的失事飞机目标检测[C]//第十一届全国雷达学术年会论文集,2010:869-872.
  • 3Novak L M, Burl M C. Optimal speckle reduction in polarimetrie SAR imagery[J]. IEEE Trans. on Aerospace and Electronic Systems, 1990, 26(2):293-305.
  • 4Lee J S, Grunes M R, Mango S A. Speckle reduction in multi- polarization, multifrequency SAR imagery[J].IEEE Trans. on Geoscience and Remote Sensing, 1991, 29(4) : 535 - 544.
  • 5Lee J S, Grunes M R, Schuler D L, et al. Scattering-model-based speckle filtering of polarimetric SAR dataJ. IEEE Trans. on Geo- science and Remote Sensing, 2006, 44(1):176 - 187,.
  • 6An W T, Cui Y, Yang J. Fast alternatives to H/a for polarime- tric SAR[J]. IEEE Trans. on Geoscience and Remote Sensing, 2010, 7(2):343-347.
  • 7Cloude S, Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Trans. on Geoscience and Remote Sensing, 1996, 34(2): 498-518.
  • 8Xu F, Jin Y Q. Deorientation theory of polarimetric scattering targets and application to terrain surface classification[J]. IEEE Trans. on GeoscienceandRemote Sensing, 2005, 43(10): 2351 -2364.
  • 9曹芳,洪文,吴一戎.基于Cloude-Pottier目标分解和聚合的层次聚类算法的全极化SAR数据的非监督分类算法研究[J].电子学报,2008,36(3):543-546. 被引量:20
  • 10陈强,蒋咏梅,陆军,匡纲要.基于自动筛选的POLSAR图像快速相干斑抑制算法[J].信号处理,2010,26(7):1003-1009. 被引量:1

二级参考文献25

  • 1Oliver C, Quegan S. Understanding synthetic aperture radar images[ M]. Boston, MA: Artech House, 1998:77- 92.
  • 2Kuan D T, Sawehuk A A, Strand T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, 7(2) : 165-177.
  • 3Frost V S, Stiles J A, Shanmugan K S, et al A model for radar images and its application to adaptive digital filtering of multiplicative noise [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1982, 4(2) : 157-165.
  • 4Lee J S. Digital image enhancement and noise filtering by use of local statistics [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2(2) : 165-168.
  • 5Lopez-Martinez C, Fabregas X. Polarimetric SAR speckle noise model [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2232-2242.
  • 6Lee J S, Grunes M R, De Grandi G. Polarimetrie SAR speckle filtering and its implication for classification [ J ]. IEEE Transactions on Geoscience. Remote Sensing, 1999, 37(5): 2363-2373.
  • 7Vasile G, Trouve E, Lee J S, et al. Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation[J]. IEEE Transactions on Geoscience. Remote Sensing, 2006, 44 ( 6 ) : 1609-1620.
  • 8Lee J S, Gmnes M R, Schuler D L, et al. Scattering- Model-Based Speckle Filtering of Polarimetric SAR Data [ J]. IEEE Transactions on Geoscience. Remote Sensing, 2006, 44(1) : 175-187.
  • 9Lopes A, Sery F. Optimal speckle reduction for the product model in muhilook pelarimetric SAR imagery and the Wishart distribution [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3) : 632-647.
  • 10Lee J S, Wen J H, Ainsworth T L, et al. Improved Sigma Filter for Speckle of SAR Imagery [ J ]. IEEE Transactions on Geoscience. Remote Sensing, 2009, 47( 1 ) : 202-213.

共引文献19

同被引文献8

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部