期刊文献+

肝移植患者他克莫司个体化给药研究 被引量:4

Study on individual administration of tacrolimus in liver transplantation recipients
下载PDF
导出
摘要 目的:建立人工神经网络用于估算他克莫司血药浓度。方法:收集26例肝移植患者口服他克莫司的94份全血浓度数据,采用遗传算法配合动量法优化网络参数,建立人工神经网络。结果:人工神经网络平均预测误差(MPE)与平均绝对预测误差(MAE)分别为(-0.11±2.81)ng/mL和(2.14±1.72)ng/mL,78.6%血药浓度数据绝对预测误差≤3.0ng/mL。多元线性回归MPE与MAE分别为(0.56±2.70)ng/mL和(2.15±1.63)ng/mL,9例次(9/14,64.3%)绝对预测误差≤3.0ng/mL。人工神经网络准确性及精密度优于多元线性回归。结论:人工神经网络预测可用于预测他克莫司血药浓度,指导个体化给药。 AIM: To establish a prediction method for tacrolimus concentration in liver transplantation recipients by artificial intelli- gence. METHODS: 94 tacrolimus concentration samples from 26 Chinese liver transplantation recipients were collected. Artificial neural net- work (ANN) was established after network pa- rameters were optimized by using momentum method combined with genetic algorithm. Fur- thermore, the performance of ANN was com- pared with that of multiple linear regression (MLR). RESULTS: With ANN method, the lev- els of mean prediction error(MPE) and mean ab- solute prediction error (MAE) were ( -- 0.11 ± 2.81) ng/mL and(2.14±1.72) ng/mL, respec- tively. The absolute prediction error of 78.6% of testing data sets was less than 3.0 ng/mL. The levels of MPE and MAE were(0.56±2.70) ng/mL and(2.15 ± 1.63) ng/mL respectively, with MLR method. The absolute prediction er- ror of 64.3% of testing data sets was less than 3.0 ng/mL. Accuracy and precision of ANN was superior to that of MLR. CONCLUSION: ANN is suitable to predict tacrolimus concentration.
出处 《中国临床药理学与治疗学》 CAS CSCD 2012年第7期791-796,共6页 Chinese Journal of Clinical Pharmacology and Therapeutics
关键词 他克莫司 肝移植 人工神经网络 Tacrolimus Liver transplanta- tion Artificial neural network
  • 相关文献

参考文献18

  • 1Jain A, Brody D, Hamad I, et al. Conversion to neoral for neurotoxicity after primary adult liver transplantation under tacrolimus[J]. Transplanta- tion, 2000, 69(1): 172-176.
  • 2席兰艳,袁洪,成柯,朱利军,阳国平,张桂香,黄志军.移植后高血压与他克莫司剂量及血药浓度的关系[J].中国临床药理学与治疗学,2012,17(1):78-82. 被引量:3
  • 3陈小全,周鲁,苏怡,左之利,赵蔡斌.神经网络及其在药动学和药效学中的应用[J].西南民族学院学报(自然科学版),2001,27(1):84-87. 被引量:4
  • 4Goren S, Karahoca A, Onat FY, et al. Prediction of cyclosporine A blood levels: an application of the adaptive-network-based fuzzy inference system (ANFIS) in assisting drug therapy[J]. Eur J Clin Pharmacol,2008, 64(8): 807-814.
  • 5Kang SH, Poynton MR, Kim KM, et al. Popula- tion pharmacokinetic and pharmacodynamic models of remifentanil in healthy volunteers using artificial neural network analysis[J].Br J Clin Pharmacol, 2007, 64(1): 3-13.
  • 6Yamamura S, Kawada K, Takehira R, et al. Arti ficial neural network modeling to predict the plasma concentration of aminoglycosides in burn patients [J]. Biomed Pharmaeother, 2004, 58 (4): 239- 244.
  • 7任斌,何秋毅,许琼,王长希,陈杰,郑志华,黎曙霞,陈孝.人工神经网络预测肾移植受者霉酚酸体内暴露药量[J].药学学报,2009,44(12):1397-1401. 被引量:17
  • 8李长平,职心乐,刘晓红,崔壮,魏风江,柯慧,李妍,马骏.AIC结合最优子集法构建logistic回归模型在预测2型糖尿病并发末梢神经病变中的应用[J].中国卫生统计,2010,27(6):594-597. 被引量:9
  • 9Sheiner LB, Beal SL. Some suggestions for measur- ing predictive performance[J]. J Pharmacokinet Biopharm,1981, 9(4): 503-512.
  • 10Wallemaeq PE, Verbeeek RK. Comparative clinicalpharmacokinetics of tacrolimus in paediatric and a- dult patients[J]. Clin Pharmacokinet,2001, 40(4) : 283-295.

二级参考文献79

共引文献61

同被引文献63

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部