期刊文献+

一类带logistic增长乙型肝炎病毒模型的稳定性和Hopf分支 被引量:1

Stability and Hopf bifurcation of a hepatitis B viral infection model with logistic hepatocyte growth
下载PDF
导出
摘要 目前大部分感染HBV模型提出的假设是肝细胞以一个比例常数增殖和感染采用双线性发生率,考虑健康肝细胞采用logistic增长而非常数比例注入,在感染方面用标准发生率替代双线性发生率,主要讨论了无病平衡点和地方平衡点的稳定性.当基本再生数R0小于1,无病平衡点是稳定的,当R0大于1,该系统可能收敛于地方平衡点,有规律的震荡或者趋近于原点,进一步证实产生了一个Hopf分支点. Most previous HBV infection models assume that hepatocytes regenerate at a constant rate and that the infection takes place via a mass action process. This paper replaces the constant infusion of healthy hepatocytes with a logistic growth term and the mass action infection term by a standard incidence function, and studies the stability of disease free and endemic equilibrium. When the basic reproduction number R0, is less than 1, the disease free steady state is stable, and when Ro 〉 1 the system can either converge to the chronic steady state, experience sustained oscillations, or approach the origin, a Hopf bifurcation point is identified.
出处 《西南民族大学学报(自然科学版)》 CAS 2012年第4期560-563,共4页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 局部稳定性 全局稳定性 logistic肝细胞增长:Hopf分支 local stability global stability logistic hepatocyte growth Hopf bifurcation
  • 相关文献

参考文献9

  • 1NOWAK MA, BONHOEFFER S, HIlL AM, et al. Viral dynamics in hepatitis B virus infection[J]. Proc Natl Acad Sci USA, 1996, 93: 4398-4402.
  • 2NOWAK MA. May RM Virus dynamics[M]. Oxford: Oxford University Press, 2000.
  • 3MIN L, SU Y, Kuang Y. Mathematical analysis of a basic virus infection model with application to HBV infection. Rocky Mount J Math, 2008, 38:1573-1585.
  • 4GOURLEY SA, KUANG Y, Nagy JD. Dynamics of a delay differential model of hepatitis B virus[J]. J Biol Dyn, 2008, 2: 140-153.
  • 5LONG C, QI H, Huang SH. Mathematical modeling of cytotoxic lymphocyte-mediated immune responses to hepatitis B virus infection[J]. J Biomed Biotechnol, 2008(1):1-9.
  • 6CIUPE SM, RIBEIRO RM, NELSON PW, et al. The role of cells refractory to productive infection in acute hepatitis B viral dynamics[J]. Proc Natl Acad Sci USA, 2007, 104:5050-5055.
  • 7CIUPE SIVI, RIBEIRO RM, Nelson laW, et al. Modeling the mechanisms of acute hepatitis B virus infection[J]. J Theor Biol, 2007b, 247:23-35.
  • 8EIKENBERRY S, HEWS S, NAGY JD, et al. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth[J]. Math Biol Eng, 2009, 6(2):283-299.
  • 9HEWi il E1KENBERRY SI N,kGY' JD, et ai.Rich dynamics of a hepatitis B viral infection model with logistic hepatoeyte growth[J]. J Math Biol, 2010, 60:573-590.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部