摘要
讨论集值映射多目标规划(VP)的最优性条件问题.首先,在没有锥凹的假设下, 利用集值映射的相依导数,得到了(VP)的锥-超有效解要满足的必要条件和充分条件. 其次,在锥凹假设和比推广了的 Slater规格更弱的条件下,给出了(VP)关于锥-超有效 解的K-T型最优性必要条件和充分条件.
in this paper , we discuss the optimality condition problems of multiobjective programming (VP) with set-valued maps. First, without cone concave assumption, some necessary and sufficient optimality conditions for cone-super efficient solution of (VP) are given by using the contingent derivative of the set-valued maps. Secondly, under cone concave assumption and condition which is weaker than the generalized Slater constraint qualification, we give K-T type necessary and sufficient optimality conditions for cone-super efficient solution of (VP).
出处
《系统科学与数学》
CSCD
北大核心
2000年第2期196-202,共7页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金
浙江省教委资助
关键词
集值映射
多目标规划
K-T最优化性条件
K-super efficient solution, contingent derivative, K-concave, K-T conditions.