期刊文献+

一种基于GOR+GPU算法的机器人视觉导航方法 被引量:7

A Visual Navigation Method for Robot Based on a GOR and GPU Algorithm
原文传递
导出
摘要 提出一种一般物体识别(GOR)方法.借鉴词袋(BOW)的统计模型,利用SIFT(尺度不变特征变换)检测算子进行特征向量描述.为了增加信息的冗余度,利用物体部件空间关系的统计信息来描述一幅图片中所有特征点的空间(相对距离和角度)关系,增广了原BOW模型中的特征向量.运用无监督判别分类器支持向量机(SVM)来实现分类识别.与此同时,采用GPU加速技术来实现SIFT特征提取与描述,以保证其实时性.然后,存手绘地图辅助导航的基础上,将该方法成功地应用到室内移动机器人导航上.实验结果表明,基于该方法的机器人导航技术具有较强的鲁棒性和有效性. A GOR (general object recognition) method is proposed. It refers to the statistical model of BOW (bag of words), and makes use of SIFT (scale-invariant feature transform) detection algorithm to describe feature vectors. Especially, in order to increase redundancy of image information, the statistical information of spatial relationships among object parts are used to describe the spatial relationships of all the feature points in an image, including relative distances and angles, which augments the feature vectors in the original BOW model. The unsupervised discriminated classifier SVM (support vector machine) is used to recognize objects. At the same time, GPU (graphic processing unit) acceleration technology is used to guarantee the real-time feature extraction and description of SIFT algorithm. Then, based on the hand drawn map, this method is successfully applied to indoor robot navigation. Experiments show that the mobile robot navigation technology based on this method is robust and effective.
出处 《机器人》 EI CSCD 北大核心 2012年第4期466-475,共10页 Robot
基金 国家自然科学基金资助项目(60804063 61175091) 江苏省自然科学基金资助项目(BK2010403) 图像信息处理与智能控制教育部重点实验室开放基金资助项目(200902) 东南大学优秀青年教师教学 科研资助计划资助项目(3208001203) 东南大学创新基金资助项目(3208000501)
关键词 一般物体识别 移动机器人 视觉导航 GPU加速 general object recognition mobile robot visual navigation GPU (graphic processing unit) acceleration
  • 相关文献

参考文献10

  • 1Leonard J J, Durant-Whyte H F. Mobile robot localization by tracking geometric beacons[J]. 1EEE Transactions on Robotics and Automation, 1991, 7(3): 376-382.
  • 2李新德,吴雪建,朱博,戴先中.一种基于手绘地图的动态环境视觉导航方法[J].机器人,2011,33(4):490-501. 被引量:7
  • 3Csurka G, Dance C R, Fan L X, et al. Visual categorization with bags of keypoints[C]//ECCV'04 - Workshop on Statistical Learning in Computer Vision. London, UK: Springer-Verlag, 2004: 59-74.
  • 4Grauman K, Leibe B. Visual object recognition[M], s.l.: Mor- gan & Claypool Publishers, 2008.
  • 5Lowe D G. Object recognition from local scale-invariant fea- ture[C]//7th IEEE International Conference on Computer Vi- sion. Piscataway, NJ, USA: IEEE, 1999:1150-1157.
  • 6Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 7Hartigan J A. Clustering algorithms[M]. Hoboken, NJ, USA: John Wiley & Sons Inc., 1975.
  • 8Wu C C. SiftGPU manual[DB/OL]. [2011-10-22]. http://cs.unc. edu/,-ccwu/.
  • 9Sinha S N, Frahm J-M, Pollefeys M, et al. GPU-based video feature tracking and matching[R]. Chapel Hill, NC, USA: Uni- versity of North Carolina at Chapel Hill, 2006.
  • 10Agarwal S, Roth D. Learning a sparse representation for ob- ject detection[C]//7th European Conference on Computer Vi- sion. London, UK: Springer-Verlag, 2002:113-130.

二级参考文献22

  • 1庄严,徐晓东,王伟.移动机器人几何-拓扑混合地图的构建及自定位研究[J].控制与决策,2005,20(7):815-818. 被引量:25
  • 2Sasaki T, Brscic D, Hashimoto H. Human-observation-based extraction of path patterns for mobile robot navigation[J]. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1401-1410.
  • 3Gueaieb W, Miah S. An intelligent mobile robot navigation technique using RFID technology[J]. IEEE Transactions on In- strumentation and Measurement, 2008, 57(9): 1908-1917.
  • 4Kim G, Chung W. Navigation behavior selection using general- ized stochastic Petri nets for a service robot[J]. 1EEE Transac- tions on Systems, Man, and Cybernetics, Part C, 2007, 37(4): 494-503.
  • 5DeSouza G N, Kak A C. Vision for mobile robot navigation: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2): 237-267.
  • 6Bonin-Font E Ortiz A, Oliver G. Visual navigation for mobile robots: A survey[J]. Journal of Intelligent and Robotic Systems, 2008, 53(3): 263-296.
  • 7Li X D, Huang X H, Dezert J, et al. A successful application of DSmT in sonar grid map building and comparison with DSTo based approach[J]. International Journal of Innovative Comput- ing, Information and Control, 2007, 3(3): 539-549.
  • 8Li X D, Dezert J, Smarandache F, et al. Evidence support- ing measure of similarity for reducing the complexity in infor- mation fusion[J]. Information Sciences, 2011, 181(10): 1818- 1835.
  • 9Tversky B, Lee P U. How space structures language[M]//Spatial cognition: An Interdisciplinary Approach to Representing and Processing Spatial Knowledge. Berlin, Germany: Springer- Verlag, 1998: 157-176.
  • 10Tversky B. What do sketches say about thinking?[C]//AAAI Spring Symposium on Sketch Understanding. California, USA: AAAI, 2002: 148-151.

共引文献6

同被引文献71

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部