期刊文献+

认知异构网络中基于克隆选择算法的动态频谱分配 被引量:3

Dynamic spectrum allocation based on clone selection algorithm in cognitive heterogeneous wireless networks
下载PDF
导出
摘要 建立了认知异构无线网络的系统模型。基于该模型,以网络效益最大化为目标,考虑接入网的频谱需求,接入网之间的干扰和对应异构网络不同接入技术的多粒度重叠信道之间的干扰约束条件,将频谱资源分配建模为非线性约束0-1整数规划问题,进而提出基于克隆选择的认知异构网络中动态频谱分配算法,并在该算法中设计了一种新的能够同时考虑接入网频谱需求和多粒度信道频谱资源的抗体整数编码方式。仿真结果表明,所提算法相比于贪婪分配算法,增加了网络效益,提高了频谱使用效率。 The system model of cognitive heterogeneous wireless networks was given. Based on this system model, the problem of dynamic spectrum allocation was formulated as a constrained O-1 integer programming with maximizing the network utility in mind, and considering the demand for spectrum from various radio access networks the interference between them and heterogeneous granularity channels because of the fact that different radio access technologies use channels with different widths. An intelligent algorithm named clone selection algorithm was applied to solve this prob- lem within which a new coding scheme for the antibody was proposed based on the demand for spectrum and heteroge- neous granularity channels. Simulation results show that the proposed method could improve the network utility and spectrum utilization compared with greedy allocation algorithm.
出处 《通信学报》 EI CSCD 北大核心 2012年第7期59-66,共8页 Journal on Communications
基金 国家杰出青年科学基金资助项目(60725105) 国家重点基础研究发展计划("973"计划)基金资助项目(2009CB320404) 长江学者和创新团队发展计划基金资助项目(IRT0852) 高等学校创新引智计划基金资助项目(B08038)~~
关键词 认知异构无线网络 动态频谱分配 克隆选择算法 多粒度信道频谱资源 网络效益 cognitive heterogeneous wireless networks dynamic spectrum allocation clone selection algorithm hetero-geneous granularity channels network utility
  • 相关文献

参考文献15

  • 1LEAVES P, MOESSNER K, TAFAZOLLI R, et al. Dynamic spectrum allocation in composite reconfigurable wireless networks[J]. Communications Magazine, IEEE, 2004, 42(5): 72-81.
  • 2ZHOU X, GANDHI S, SURI S, et al. eBay in the Sky: strategy-proof wireless spectrum auctions[A]. MobiCom'08, Proceedings of the 14th ACM International Conference on Mobile Computing and Networking[C]. San Francisco, California, USA, 2008.
  • 3JIA J, ZHANG Q, ZHANG Q, et al. Revenue generation for truthful spectrum auction in dynamic spectrum access[A]. MobiHoc'09, Proceedings of the Tenth ACM International Symposium on Mobile Ad Hoc Networking and Computing[C]. New Orleans, LA, USA, 2009.
  • 4ZHOU X, ZHENG H. TRUST: a general framework for truthful dou- ble spectrum auctions[A]. INFOCOM 09[C]. Rio de Janeiro, 2009. 999-1007.
  • 5ZHOU X, ZHENG H. Breaking bidder collusion in large-scale spectrum auctions[A]. MobiHoc '10, Proceedings of the Eleventh ACM International Symposium on Mobile Ad Hoc Networking and Computing[C]. Chicago, Illinois, USA, 2010.
  • 6LILI C, LEI Y, XIA Z, et al. Optimus: SINR-Driven Spectrum Distribution via Constraint Transformation[A]. 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum [C]. Singapore, 2010. 1 - 12.
  • 7柴争义,刘芳.基于免疫克隆选择优化的认知无线网络频谱分配[J].通信学报,2010,31(11):92-100. 被引量:41
  • 8TOKA L, VIDCS A. General distributed economic framework for dynamic spectrum allocation[J]. Computer Communications, 2009, 32(18): 1955-1964.
  • 9SUBRAMANIAN A P, AL-AYYOUB M, GUPTA H, et al. Nearoptimal dynamic spectrum allocation in cellular networks[A]. 2008 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks[C]. Chicago, IL, 2008.1-11.
  • 10IEEE 1900.4, IEEE Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks[S].

二级参考文献81

共引文献59

同被引文献26

  • 1MCHENRY M. Spectrum White Space Measurements[R]. New America Foundation Broadband Form, 2003.
  • 2BAE Y H, ALFA AS, CHOI B D. Performance analysis of modified IEEE 802.11-based cognitive radio networks[J]. Communications Letters, 2010, 14(10): 975-977.
  • 3SIDANG H P, SCHAAR M. Queuing-based dynamic channel selection for heterogeneous multimedia applications over cognitive radio networks[J]. IEEE Transactions on Multimedia, 2008, 10(5): 896-909.
  • 4HOANG A T, WONG D T C, LIANG Y C. Design and analysis for an 802.11-based cognitive radio network[A]. Wireless Communications and Networking Conference[C]. Budapest, Hungary, 2009. 1-6.
  • 5KAUR P, KHOSLA A, UDDIN M. Markovian queuing model for dynamic spectrum allocation in centralized architecture for cognitive radios[J]. IACSIT InternationalJournal of Engineering and Technology, 2011,3(1): 96-101.
  • 6WANG B, ZHAO D M, CAlJ.Joint connection admission control and packet scheduling in a cognitive radio network with spectrum underlay[J]. IEEE Transactions on Wireless Communications, 2011, 10(11): 3852-3863.
  • 7KIM K. T-preemptive priority queue and its application to the analysis of an opportunistic spectrum access in cognitive radio networks[J]. Computers & Operations Research, 2012, 39(7): 1394-1401.
  • 8TUMULURU V K, WANG P, NIYATO D. A novel spectrum scheduling scheme for multi-channel cognitive radio network and performance analysis[J]. IEEE Transactions on Vehicular Technology, 2011,60(4): 1849-1858.
  • 9赵知劲,彭振,郑仕链,徐世宇,楼才义,杨小牛.基于量子遗传算法的认知无线电频谱分配[J].物理学报,2009,58(2):1358-1363. 被引量:55
  • 10杜祜康,赵英凯.整数规划问题智能求解算法综述[J].计算机应用研究,2010,27(2):408-412. 被引量:20

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部