期刊文献+

基于小波变换与Elman神经网络的短期风速组合预测 被引量:9

Short-term combination forecasting of wind speed based on wavelet transform and Elman neural networ
下载PDF
导出
摘要 风速的准确预测对风电场发电系统的经济和安全运行有着重要的作用。为了克服风速随机性强的缺点,提高短期风速预测的精度,提出了一种将小波变换与Elman神经网络相结合的短期风速组合预测模型。该模型由小波预处理模块和神经网络预测模块组成。首先利用小波预处理模块将风速序列作多尺度分解,重构得到不同频段的子序列,然后利用Elman神经网络模块分别对其训练和预测。实际风速预测结果表明,与单一的Elman和ARMA法相比,该组合预测模型的预测精度有较大的改善,可以用于风电场短期风速的预测。 Accurate forecasting of wind speed is important for the economic and secure operation of wind power generation systems. In order to overcome the randomness of wind, improve the accuracy of short-term wind speed forecasting, a combination forecasting model of short-term wind speed based on wavelet transform and Elman neural network is presented in this paper. The model consists of a wavelet pre-processing module and a neural network prediction module. First, using wavelet transform, the wind speed time series is decomposed and reconstructed into the sub-sequences at different frequent band, then these sub-sequences are input into Elman networks for training and prediction, respectively. Results of the actual wind speed forecasting show, in comparison with single Elman network and ARMA method, the prediction accuracy of the combination forecasting model has greatly improved, which can be used as short-term wind speed prediction.
出处 《可再生能源》 CAS 北大核心 2012年第8期42-45,49,共5页 Renewable Energy Resources
基金 河南省科技攻关重点项目(112102310478)
关键词 风速预测 小波变换 ELMAN神经网络 组合预测 wind speed forecasting wavelet transform Elman neural network combination forecasting
  • 相关文献

参考文献9

  • 1GLOBAL WIND ENERGY COUNCIL. Global wind re- port [EB/OL].http://www.gwec.net/fileadmin/images/Publi cations / GWEC_annual_market_update_2010 2nd ition_ April_2011.pdf, 2011-10-05.
  • 2WORLD WIND ENERGY ASSOCIATION. World wind energy report 2010 [EB/OL]. http://www.wwindea.org/ home/images/stories/pdfs/worldwindenergyreport2010_s. pdf, 2011-10-27.
  • 3龚松建,袁宇浩,王莉,张广明.基于PSO优化LS-SVM的短期风速预测[J].可再生能源,2011,29(2):22-27. 被引量:16
  • 4BOUZGOU H, BENOUDJIT N. Multiple architecture system for wind speed prediction [J].Applied Energy, 2011,88(7) :2463-2471.
  • 5戚双斌,王维庆,张新燕.基于SVM的风速风功率预测模型[J].可再生能源,2010,28(4):25-28. 被引量:34
  • 6MA L, LUAN S, JIANG C, et al. A review on the forecasting of wind speed and generated power [J].Re- newable Sustainable Energy Reviews,2009 (13) : 915-920.
  • 7BILGILI M, SAHIN B, YASAR A. Application of arti-ficial neural networks for the wind speed prediction of target station using reference stations data [J].Renew- able Energy, 2007,32 : 2350-60.
  • 8LI G, SHI J. On comparing three artificial neural net- works for wind speed forecasting [J].Applied Energy, 2010,87(7) :2313-2320.
  • 9ZHANG Q, BENVENISTE A. Wavelet network [J]. 1EEE Trails Neural Networks,1992,3 (6):889- 898.

二级参考文献20

  • 1许葆华,李洪儒,年海涛.支持向量机在时间序列预测中的应用[J].微计算机信息,2008,24(4):253-254. 被引量:12
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 3杨延西,刘丁.基于小波变换和最小二乘支持向量机的短期电力负荷预测[J].电网技术,2005,29(13):60-64. 被引量:85
  • 4吴国旸,肖洋,翁莎莎.风电场短期风速预测探讨[J].吉林电力,2005,33(6):21-24. 被引量:71
  • 5CADENAS E, RIVERA W.Wind speed forecasting in the south coast of Oaxaca,Mexico [J].Renewable Energy, 2007,32(12) : 2116-2128.
  • 6P A MASTOROCOSTAS, J B THEOCHAIRS, A G BAKIRTZIS. Fuzzy modelling for short term load forecasting using the orthogonal least squares method [J].IEEE Trails Energy Conversion, 1999,14(1): 29- 36.
  • 7D A FADARE. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria [J]. Applied Energy, 2010,87 : 934-942.
  • 8DAMOUSIS IG,ALEXIADIS MC,THEOCHARIS J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation [J]. IEEE Transactions on Energy Conversion, 2004,19 ( 2 ) : 352-361.
  • 9MOHAMMAD MONFARED, HASAN RASTEGAR, HOSSEIN MADADI KOJABADI. A new strategy for wind speed forecasting using artificial intelligent methods [J]. Renewable Energy, 2009,34 : 845 - 848.
  • 10R E ABDEL -AAL,M A ELHADIDY,S M SHAAHID. Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks [J]. Renewable Energy, 2009, 34 : 1686-1699:.

共引文献48

同被引文献94

  • 1龚强,袁国恩,张云秋,汪宏宇,于华深,蔺娜,白乐生.MM5模式在风能资源普查中的应用试验[J].资源科学,2006,28(1):145-150. 被引量:56
  • 2黄浩辉,宋丽莉,植石群,毛慧琴,郝全成,刘爱君.多元回归法在复杂地形风资源微尺度模拟中的应用[J].气象,2007,33(7):98-104. 被引量:14
  • 3BIGDELI N, AFSHAR K, GAZAFROUDI A S, et al. A com- parative study of optimal hybrid methods for wind power pre- diction in wind farm of Alberta, Canada[J]. Renewable and Sustainable Energy Reviews, 2013,27( 11 ) : 20-29.
  • 4LIU D, NIU D Z, WANG H, et al. Short-term wind speed forecasting using wavelet transform and support vector ma-chines optimized by genetic algorithm[J]. Renewable Energy, 2014,62(2) :592-597.
  • 5HUI L, TIAN H Q, PAN D F, et al. Forecasting models for wind speed using wavelet, wavelet packet, time series and ar- tificial neural networks[J]. Applied Energy, 2013,107 (7) : 191-208.
  • 6GUO Z H, ZHAO W G, LU H Y, et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model[J]. Renewable Energy, 2014,37( 1 ) : 241-249.
  • 7LIU Hui, TIAN Hongqi, LI Yanfei. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[J]. Applied Energy, 2012,98 ( 12 ) : 415-424.
  • 8LIU Xiangdong, XIU Chunbo. A novel hysteretic chaotic neural network and its application[J]. Neurocomputing, 2007,70( 13/ 14/15 ) : 2 561-2 565.
  • 9LIU Xiangdong, XIU Chunbo. Hysteresis modeling based on the hysteretic chaotic neural network[J]. Neural Computing and Applications, 2008,17 (5/6) : 579-583.
  • 10Alexiadisa M C, Dokopoulosa P S, Sahsamanoglou H S, et al. Short-term forecasting of wind speed and related electrical power. Solar Energy, 1998, 63(1) : 61-68.

引证文献9

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部