期刊文献+

限定记忆极端学习机及其应用 被引量:9

Fixed-memory extreme learning machine and its applications
原文传递
导出
摘要 为了实现极端学习机(ELM)的在线训练,提出一种限定记忆极端学习机(FM-ELM).FM-ELM以逐次增加新训练样本与删除旧训练样本的方式,提高其对于系统动态变化特性的自适应性,并根据矩阵求逆引理实现了网络输出权值的递推求解,减小了在线训练过程的计算代价.应用于具有动态变化特性的非线性系统在线状态预测表明,FM-ELM是一种有效的ELM在线训练模式,相比于在线贯序极端学习机,FM-ELM具有更快的调节速度和更高的预测精度. To solve the problem of extreme learning machine(ELM) on-line training, an algorithm, fixed-memory extreme learning machine(FM-ELM), is proposed. FM-ELM adopts the latest training sample and abandons the oldest training sample iteratively to enhance its adaptive capacity. The output weights of FM-ELM are determined recursively based on Sherman-Morrison formula. Thus, the computational cost of FM-ELM training procedure is effectively reduced. Numerical experiments on nonlinear system on-line condition prediction show that FM-ELM has better performance in adjusting speed and prediction accuracy in comparison with on-line sequential extreme learning machine(OS-ELM) .
作者 张弦 王宏力
出处 《控制与决策》 EI CSCD 北大核心 2012年第8期1206-1210,共5页 Control and Decision
基金 国家部委预先研究基金项目(51309060302)
关键词 神经网络 极端学习机 在线训练 非线性系统 neural networks extreme learning machine on-line training nonlinear systems
  • 相关文献

参考文献11

  • 1Song Q S, Feng Z R. Effects of connectivity structure of complex echo state network on its prediction performance for nonlinear time series[J]. Neurocomputing, 2010, 73(10- 12): 2177-2185.
  • 2Muhammad A E Saeed Z. Chaotic time series prediction with residual analysis method using hybrid EIman-NARX neural networks[J]. Neurocomputing, 2010, 73(13-15):2540-2553.
  • 3Huang G B, Zhu Q Y, Stew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
  • 4Liang N Y, Huang G B, Saratchandran N, et al. A fast and accurate on-line sequential learning algorithm for feedforward networks[J]. IEEE Trans on Neural Networks, 2006, 17(6): 1411-1423.
  • 5Miche Y, Soriamaa A, Bas P, et al. OP-ELM: Optimally pruned extreme learning machine[J]. IEEE Trans on Neural Networks, 2010, 21(1): 158-162.
  • 6Liu N, Wang H. Ensemble based extreme learning machine[J]. IEEE Signal Processing Letters, 2010, 17(8): 754-757.
  • 7Lan Y, Soh C Y, Huang G B. Constructive hidden nodes selection of extreme learning machine for regression[J]. Neurocomputing, 2010, 73(16/17/18): 3191-3199.
  • 8Malathi V, Marimuthu N S, Baskar S. Intelligent approaches using support vector machine and extreme learning machine for transmission line protection[J]. Neurocomputing, 2010, 73(10-12): 2160-2167.
  • 9张弦,王宏力.局域极端学习机及其在状态在线监测中的应用[J].上海交通大学学报,2011,45(2):236-240. 被引量:12
  • 10韩敏,王新迎.基于信赖域Newton算法的ELM网络[J].控制与决策,2011,26(5):757-760. 被引量:3

二级参考文献28

  • 1王俊年,申群太,周少武,沈洪远.基于种群小生境微粒群算法的前向神经网络设计[J].控制与决策,2005,20(9):981-985. 被引量:13
  • 2史志伟,韩敏.ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-261. 被引量:47
  • 3Tang X L, Han M. Partial Lanczos extreme learning machine for single-output regression problems [J]. Neuroeomputing, 2009,72 ( 13-15 ) : 3066-3076.
  • 4Liu N, Wang H. Ensemble based extreme learning machine[J]. IEEE Signal Processing Letters, 2010, 17 (8) :754-757.
  • 5Lan Y, Soh C Y, Huang G B. Constructive hidden nodes selection of extreme learning machine for re-gression[J]. Neuroeomputing, 2010, 73 ( 16-18): 3191-3199.
  • 6Minhas R, Mohammed A A, Wu Q M J. A fast rec- ognition framework based on extreme learning machine using hybrid object information [J]. Neurocomputing, 2010, 73(10-12) :1831-1839.
  • 7Miche Y, Sorjamaa A, Bas P, et al. OP-ELM: Opti- mally pruned extreme learning machine [J]. IEEE Transactions on Neural Networks, 2010, 21(1) : 158 - 162.
  • 8Cao J W, I.in Z P, Huang G B. Composite function wavelet neural networks with extreme learning ma- chine [J]. Neurocomputing, 2010, 73(7-9):1405- 1416.
  • 9Minhas R, Baradarani A, Seifzadeh S, et al. Human action recognition using extreme learning machine based on visual vocabularies [J]. Neurocomputing, 2010, 73(10-12) : 1906-1917.
  • 10Malathi V, Marimuthu N S, Baskar S. Intelligent ap- proaches using support vector machine and extreme learning machine for transmission line protection [J]. Neuroeomputing, 2010, 73(10-12) : 2160-2167.

共引文献49

同被引文献74

  • 1Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006,70(1/2/3): 489-501.
  • 2Zhu Q Y, Qin A K, Suganthan P N, et al. Evolutionary extreme learning machine[J]. Pattern Recognition, 2005, 38(10): 1759-1763.
  • 3Miche Y, Sorjamaa A, Bas P, et al. OP-ELM: Optimally pruned extreme learning machine[J]. IEEE Trans on Neural Networks, 2010, 21(1): 158-162.
  • 4Malhi A, Gao R X. PCA-based feature selection scheme for machine defect classification[J]. IEEE Trans on Instrumentation and Measurement, 2004, 53(6): 1517-1525.
  • 5Hyvarinen A, Oja E. Independent component analysis: Algorithms and applications[J]. Neural Networks, 2000, 13(4/5): 411-430.
  • 6Yamamoto H, Yamaji H, Fukusaki E, et al. Canonical correlation analysis for multivariate regression and its application to metabolic fingerprinting[J]. Biochemical Engineering J, 2008, 40(2): 199-204.
  • 7Barrett A B, Barnett L, Seth A K. Multivariate granger causality and generalized variance[J]. Physical Review E, 2010, 81(4): 041907.
  • 8Sallehuddin R, Shamsuddin S M H, Hashim S Z M. Application of grey relational analysis for multivariate time series[C]. Proc of 8th Int Conf on Intelligent Systems Design and Applications. Piscataway, 2008: 432-437.
  • 9Shannon C E A. Mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3-55.
  • 10Box G E P, Jenkins G M, Reinsel G C. Time series analysis: Forecasting and control[M]. New Jersey: John Wiley & Sons, 2008: 677-678.

引证文献9

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部