摘要
为了研究地震条件下挡土墙的主动土压力,基于传统的滑楔体极限平衡理论,采用拟动力方法,得到了地震条件下主动土压力的计算公式以及临界破裂角的解析解。主动土压力的计算公式考虑了地震力、挡土墙后填土的内摩擦角和粘聚力、挡土墙与后填土之间的摩擦角和粘聚力、挡土墙的倾角以及超载角等影响因素,并分析了这些因素对临界破裂角和地震主动土压力系数的影响。研究结果表明,当不考虑土体放大系数和挡土墙后填土的粘聚力的影响时,临界破裂角小于Mononobe-Okabe方法计算出的破裂角;临界破裂角随着土体放大系数的增大而减小;地震主动土压力系数随着地震系数、挡土墙倾角或者超载角的增大而增大,随着挡土墙后填土的内摩擦角或者土体放大系数的增大而减小,随着挡土墙与后填土之间的摩擦角的增大表现为先减小后增大。
In order to study the seismic active pressure of retaining wall, the pseudo-dynamic method was adopted to deduce the formulas of seismic active earth pressure and the analytical solution of critical rupture angle based on conventional sliding wedge limit equilibrium theory. The influential factors of seismic forces, internal friction angle and cohesion of backfill of retaining wall, friction angle and cohesion between retaining wall and backfill, inclination of retaining wall, and surcharge angle were considered for the formulas. The effects of these factors on critical failure angle and seismic active earth pressure coefficient were analyzed. The results show that (1) the critical rupture angle is less than that calculated by Mononobe-Okabe method when ignoring the soil amplification factor and cohesion of backfills; (2) the critical rupture angle decreases with the increase of soil amplification factor; (3) seismic active earth pressure coefficient increases with the increase of seismic coefficient, inclination of retaining wall or surcharge angle, but it decreases with the increase of internal friction increases with the increase angle of backfill or soil amplification factor, in addition, it decreases and then of friction angle between retaining wall and backfill.
出处
《公路交通科技》
CAS
CSCD
北大核心
2012年第8期25-30,共6页
Journal of Highway and Transportation Research and Development
关键词
道路工程
挡土墙
拟动力方法
地震主动土压力
临界破裂角
road engineering
retaining wall
pseudo-dynamic method
seismic active earth pressure
critical rupture angle