期刊文献+

有效保持细节特征的快速非局部滤波方法 被引量:4

Efficient detail-preserving and fast nonlocal means filtering algorithm
下载PDF
导出
摘要 非局部均值滤波方法具有优异的去噪性能,但该算法计算复杂度太高,且滤波后图像有大量结构残留。研究了基于预选择的非局部均值滤波方法,并指出已有方法在提取图像子块特征方面的不足。利用梯度域奇异值分解提取图像子块的结构特征,提出一种有效保持细节特征的快速非局部滤波方法。主要贡献有:(1)基于局部结构特征的鲁棒预选择方法;(2)相似集大小与滤波性能的关系以及相似子块的自动选取;(3)结构相似权系数的构造。利用欧氏距离的对称性进一步提高运行速度。实验结果表明,该方法在去除噪声的同时能有效地保持图像细节信息,取得滤波性能与运行速度之间较好的平衡。 Nonlocal Means Filtering(NLMF)method exhibits excellent performance for image denoising.However,the computational complexity of NLMF is too high,and some structure content of the original image is still visible in the residual noise.The existing NLMFs based preselection are analyzed,and it is pointed out that they all have deficiencies in terms of feature extraction from image patch,then a detail-preserving and fast NLMF algorithm is proposed via using the Singular Value Decomposition(SVD)in gradient domain to extract structure feature from image patch.The contributions to NLMF are:(1)a robust preselection approach to image patches based local structure feature;(2)to analyze relation between size of the similar sets and filtering performance,and automatic selection of similar patches;and(3)to construct the weight coefficient with structural similarity.In addition,the symmetry of Euclidean distance is considered to accelerate the proposed algorithm further.The experimental results show that the proposed algorithm can well remove the noise while preserving image details and obtains a good tradeoff between performance and running speed.
出处 《计算机工程与应用》 CSCD 2012年第23期196-202,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61070227 No.60773043) 教育部科学技术研究重大项目(No.309017)
关键词 非局部滤波 梯度域奇异值分解 图像特征 预选择 结构相似权系数 Nonlocal Means Filtering(NLMF) Singular Value Decomposition(SVD)in gradient domain image feature preselection structure similarity weight
  • 相关文献

参考文献13

  • 1Tomasi C,Manduchi R.Bilateral filtering for gray and color images[C]//Proceedings of 6th International Conference on Computer Vision, Bombay, India, 1998: 839-846.
  • 2Chan T F.The digital TV filter and nonlinear denoising[J]. IEEE Transactions on Image Processing, 2001, 10(2): 231-241.
  • 3Buades A, Coll B, Morel J M.A non-local algorithm for image denoising[C]//Proceedings of IEEE Computer So- ciety Conference on Computer Vision and Pattern Rec-ognition, San Diego, Califomia, 2005 : 60-65.
  • 4Mahmoudi M, Sapiro G.Fast image and video denoising via nonlocal means of similar neighborhoods[J].IEEE Signal Processing Letters, 2005,12(12) :839-842.
  • 5Coup P, Yger P, Prima S, et al.An optimized block- wise nonlocal means denoising filter for 3-D magnetic images[J].IEEE Transactions on Medical Imaging, 2008, 27(4) :425-441.
  • 6Vignesh R, Oh B T, Kuo C C J.Fast Non-Local Means (NLM) computation with probabilistic early termination[J]. IEEE Signal Processing Letters, 2010,17 (3) : 277-280.
  • 7Tasdizen T.Principal neighborhood dictionaries for nonlo- cal means image denoising[J].IEEE Transactions on Im- age Processing,2009,18(12) :2649-2660.
  • 8郑钰辉,孙权森,夏德深.基于2DPCA的有效非局部滤波方法[J].自动化学报,2010,36(10):1379-1389. 被引量:12
  • 9Brox T, Kleinschmidt O, Cremers D.Efficient nonlocal means for denoising of textural patterns[J].IEEE Trans- actions on Image Processing,2008,17(7) : 1083-1092.
  • 10孙伟峰,彭玉华.一种改进的非局部平均去噪方法[J].电子学报,2010,38(4):923-928. 被引量:33

二级参考文献31

  • 1A B~des, B Coil, J M Morel. A review of image denoising algorithms, with a new one[ J]. Multiscale Modeling and Simulation (SIAM Interdisciplanary Journal) ,2005,4(2):490- 530.
  • 2C Tomasi, R Manduchi. Bilateral faltering for gray and color images[ A ]. Proceedings of lntemafional Conference on Computer Vision[ C]. Bombay, India, 1998. 839 - 846.
  • 3P Perona, J Malik. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on PAMI, 1990, 12(5) :629 - 639.
  • 4L Rudin, S Osher, E Fatemi. Nonlinear total variation based noise removal algorithms [ J ]. Physica D, 1992, 60 (2) : 259 - 268.
  • 5R R Coifman, D Donoho. Translafion-invariant de-noising[ J]. In Wavelets and Statistics, Springer-Vedag, New York, 1995, 125- 150.
  • 6K Dabov, A Foi, V Katkovnik, K Egiazarian. Image denoising by sparse 3D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8) :2080 - 2095.
  • 7T Brox, D Cremers. Iterated nonlocal means for texture restoration[ A ]. In Proc International Conference on Scale Space and Variational Methods in Computer Vision [ C ]. F Sgallari, A Murli,N Paragios,et al. New York: Springer,2007,4485:13 - 24.
  • 8A Buades, B Coil, J M Morel. Nonlocal image and movie denoising[ J]. International Journal of Computer Vision, 2008,76 (2) : 123 - 139.
  • 9Lin C H, Tsai J S, Chui C T. Switching bilateral filter with a texture/noise detector for universal noise removal. IEEE Transactions on Image Processing, 2010, 19(9): 2307-2320.
  • 10Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation, 2005, 4(2): 490-530.

共引文献42

同被引文献36

  • 1余松煜.数字图像处理[M].北京:电子工业大学出版社,1989..
  • 2Buades A, Coll B, Morel J M. A review of image denoising algorithms,with a new one [J] . Multiscale Modeling and Simulation ( SIAMInterdisciplanary Journal),2005, 4( 2) : 490 - 530.
  • 3Mahmoudi M, Sapiro G. Fast image and video denoising via nonlocal means of similar neighborhoods[J]. IEEE Signal Processing Letters ,2005,12(12):839-842.
  • 4Coup6 P,Yger P,Prima S,et An optimized block wise non - local means denoising filter for 3 - D magnetic images[J]. IEEE Transactions onMedical Imaging,2008,27(4) :425 - 441.
  • 5Brox T,Kleinschmidt 0, Cremere D. Efficient non - local means for denoising of textural patterns[J]. IEEE Transactions on Ime Processing,2008,17(7):1083-1092.
  • 6Tasdizen T. Principal neighboriiood dictionaries for non - local means image denoising[J]. IEEE Trsmsactions on Image Processing,2009,18( 12):2649 - 2660.
  • 7Vignesh R,Oh B T, Kuo C C J. Fast Non - Local Means(NLM) computation with probabilistic early termination[J]. IEEE Signal ProcessingLetters,2010,17(3) ;277 -280.
  • 8Zhou Wang, Alan C Bovik,Hamid R Sheikh , Eero P. Simoncelli . Image Quality Assessment: From error measurement to structural similarity[J]. IEEE Transactions on Image Processing ,2004,13(4) : 600 -612.
  • 9Vignesh R,0h B T, Kuo C C J. Fast Non - Local Means( NLM) computation with probabilistic early termination[J]. IEEE Signal ProcessingLetters,2010,17(3) :277 -280.
  • 10MAHMOUDI M,SAPIRO G. Fast image and video denoisingvia nonlocal means of similar neighborhoods[J]. IEEE SignalProcessing Letters,2005,12(12):839–842.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部