期刊文献+

基于Tsallis理论的中国股市收益分布研究 被引量:6

The Research of Returns Distribution of Chinese Stock Market with Tsallis Theory
下载PDF
导出
摘要 应用Tsallis提出的非广延统计力学理论以及与之密切相关的非线性Fokker-Planck方程所描述的动力系统,根据我国上证指数和深证指数2004年1月1日~2008年11月13日的高频数据,分析了在三种不同的时间标度下股指收益的概率分布,发现Tsallis分布可以很好地描述两市收益分布的尖峰厚尾有限方差等特征,同时也给出了市场微观动力学层面的解释。揭示出我国上海和深圳股市的价格过程并不符合随机游走,而是反常扩散过程,两市具有十分接近的非线性动力系统特征。所得结论对于研究我国金融市场的资产配置和定价、风险管理和制度建设都具有重要的意义。 This paper analyses the probability distribution of stock index returns in three different time scales by using nonextensive statistical mechanics theory proposed by Tsallis, closely associated with dynamic system described by the nonlinear Fokker-Planck equations in the financial market modeling, according to the high-frequency data of Shanghai and Shenzhen stock market Index from 2004-1-1 to 2008-11-13, and suggests that Tsal- lis distribution can describe the characteristics of fat-tail and finite variance of the two markets, and gives the market microstructure dynamic explanation. It indicates that the stock price processes of Shanghai and Shenzhen markets is not consistent with random walk, but the anomalous diffusion process. The two markets have very similar characteristics of nonlinear dynamic systems. These results for asset allocation and pricing, risk management and institutional development in China's financial markets are of great significance.
作者 张磊 苟小菊
出处 《运筹与管理》 CSSCI CSCD 北大核心 2012年第3期200-205,共6页 Operations Research and Management Science
关键词 金融工程 收益率分布 Tsallis理论 股票市场 financial engineering returns distribution Tsallis theory stock market
  • 相关文献

参考文献18

二级参考文献59

  • 1魏宇,黄登仕.中国股票市场波动持久性特征的DFA分析[J].中国管理科学,2004,12(4):12-19. 被引量:23
  • 2约翰·赫尔 张陶伟(译).期权、期货和衍生证券[M].北京:华夏出版社,1997..
  • 3罗札·塞克斯.应用统计手册[M].天津科技翻译出版公司,1998.386-388.
  • 4[1]Rosario N.Mantegna,An Introduction to Econophysics:Correlations and Complexity in Finance[M],Cambridge university Press,1999.
  • 5[2]Fama,The Behaviour of Stock-Market Prices[J],Journal of Business,1965,38.
  • 6[3]Osborne.Brownian Motion in Stock Market[J],Operations Research,1959,10.
  • 7[4]Tonis Vaga,The Coherent Market Hypothesis[J],Financial Analysts Journal,1990,11/12.
  • 8[5]Paul Embrechts,Modelling Extremal Events For Insurance and Finance[M],springer,1997.
  • 9[6]Robert C.Blattberg and Nicholas J.Gonedes,Acomparison of Student and Stable Distribution as Statistical Models of Stock Prices[J],Journal of Business,1974,47.
  • 10[7]Press,A Compound Events Model for Security Prices[J],Journal of Business,1968,41.

共引文献86

同被引文献60

  • 1陈倩,李金林,张伦.基于g-h分布的上证指数收益率分布拟合研究[J].中国管理科学,2008,16(S1):226-230. 被引量:11
  • 2林美艳,薛宏刚,赵凤群,魏丘嵩.上证综合指数收益率的统计分析[J].运筹与管理,2005,14(2):115-119. 被引量:11
  • 3Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3): 133-155.
  • 4Lo A. Long term memory in stock market prices[J]. Econometrica, 1991, 59(5): 1279-1313.
  • 5Lux T. The stable Paretian hypothesis and the frequency of large returns: an examination of major German stocksIJ]. Applied Financial Economics, 1996, 6(6): 463-485.
  • 6Onalan O. Financial risk management with normal inverse Gaussian distributions[J]. International Research JournM of Finance and Economics, 2010, 38(2): 104-115.
  • 7Pog~ny T K, Nadarajah S. On the characteristic function of the generMized normM distribution[J]. Comptes Rendus Math~matique, 2010, 348(3): 203-206.
  • 8Kozuki N, Fuchikami N. Dynamical model of financial markets: fluctuating 'temperature' causes intermit- tent behavior of price changes[J]. Physica A, 2003, 329(2): 222-230.
  • 9Ryuji I, Masayoshi I. Time-series analysis of foreign exchange rates using time-dependent pattern entropy[J]. Physica A, 2013, 392(16): 3344-3350.
  • 10Michael F, Johnson M D. Financial market dynamics[J]. Physica A, 2003, 320(15): 525-534.

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部