期刊文献+

多个共面任意分布表面裂纹的应力强度因子 被引量:6

The Stress Intensity Factors of Multitudinous Arbitraily Distributed Coplanar Surface Cracks
下载PDF
导出
摘要 采用线弹簧模型求解多个共面任意分布表面裂纹的应力强度因子。基于Reissner板理论和连续分布位错思想,通过积分变换方法,将含有多个共面任意分布表面裂纹的无限平板问题归结为一组Cauchy型奇异积分方程。利用Gauss-Chebyshev方法获得了奇异积分方程的数值解。为验证本文方法的正确性,文中最后给出了有关应力强度因子或P-V曲线的数值结果并与现有的理论结果或实验结果进行了对比。结果表明了连续位错理论是描述裂纹问题的一种有效的数学手段,将其与线弹簧模型结合求解多个共面任意分布表面裂纹问题是可行的,具有足够的精度。 The stress intensity factors of multitudinous arbitrarily distributed coplanar surface cracks are solved by using the line - spring model. Based on the Reissner' s plate theory along with continuously distributed dislocation thought, the problem of a infinite plate containing multitudinous arbitraily distributed coplanar surface cracks is came down to a set of Cauchy - type singular integral equations, which is resolved by using Gauss - Ghebyshev method. In the end, in order to verify the validity of the method in the paper, the numerical results are given and compared with the concerned theoretical or experimental results. The comparison shows that the continuously distributed dislocation thought combined with the line - spring model is a available and accurate mathematical means which solved the problem of multitudinous arbitraily distributed coplanar surface cracks.
出处 《力学季刊》 CSCD 2000年第1期72-79,共8页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(批准号19272070)
关键词 线弹簧模型 共面表面裂纹 应力强度因子 the line - spring model coplanar surface cracks dislocation density function stress intensity factor singular integral equation.
  • 相关文献

参考文献6

共引文献17

同被引文献51

  • 1谭晓明,陈跃良,段成美.三维多裂纹应力强度因子的有限元分析[J].机械强度,2004,26(z1):195-198. 被引量:20
  • 2韩芸,黄小平,崔维成,胡勇.T型接头焊趾表面裂纹应力强度因子的简化计算方法[J].中国造船,2006,47(1):1-11. 被引量:20
  • 3王庆丰,黄小平,崔维成.不同位置裂纹间的互相作用及其影响规律的有限元分析[J].江苏科技大学学报(自然科学版),2006,20(1):16-19. 被引量:7
  • 4Shu H M, Petit J, Jiang Z D, et al. Stress intensity factors and interaction of three cracks on both edges of finite width sheet[ J]. Engineering Fracture Mechanics, 1994, 13:285 -294.
  • 5Wessel C, Cisilino A, Santi O, et al. Numerical and experimental determination of three-dimensional multiple crack growth in fatigue [ J ]. Theoretical and Applied Fracture Mechanics, 2001, 35:47 - 58.
  • 6Bowness D, Lee M M K. Prediction of weld toe magnification factors for semi-elliptical cracks in T-but t joint [ J ]. International Journal of Fatigue, 2000, 22 : 369 - 387.
  • 7Yan A M,Nguyen-Dang H. Multiple-cracked fatigue crack growth by BEM [ J ]. Computational Mechanics, 1995, 16:273 - 280.
  • 8Liu D S, Chiou D Y. A coupled IEM/FEM approach for solving elastic problems with multiple cracks [ J ]. International Journal of Solids & Structures, 2003, 40:1973 - 1993.
  • 9Rice J R,Levy N J.The part-through surface cracks in an elastic plate[J].J Appl Mech,1972,39:185-194.
  • 10Delale F,Erdogan F.Line spring model for surface crack in Reissner plate[J].Int J Eng Sci,1981,19:1331-1340.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部