摘要
The dynamic behaviour of the two-site coupled cavities model which is doped with ta wo-level system is investi-gated. The exact dynamic solutions in the general condition are obtained via Laplace transform. The simple analytical solutions are obtained in several particular cases, which demonstrate the clear and simple physical picture for the quan-tum state transition of the system. In the large detuning or hoppling case, the quantum states transferring between qubits follow a slow periodic oscillation induced by the very weak excitation of the cavity mode. In the large coupling case, the system can be interpreted as two Jaynes-Cummings model subsystems which interact through photon hop between the two cavities. In the case of λ≈△〉〉 g, the quantum states transition of qubits is accompanied by the excitation of the cavity, and the cavity modes have the same dynamic behaviours and the amplitude of probability is equM to 0.25 which does not change with the variation of parameter.
The dynamic behaviour of the two-site coupled cavities model which is doped with ta wo-level system is investi-gated. The exact dynamic solutions in the general condition are obtained via Laplace transform. The simple analytical solutions are obtained in several particular cases, which demonstrate the clear and simple physical picture for the quan-tum state transition of the system. In the large detuning or hoppling case, the quantum states transferring between qubits follow a slow periodic oscillation induced by the very weak excitation of the cavity mode. In the large coupling case, the system can be interpreted as two Jaynes-Cummings model subsystems which interact through photon hop between the two cavities. In the case of λ≈△〉〉 g, the quantum states transition of qubits is accompanied by the excitation of the cavity, and the cavity modes have the same dynamic behaviours and the amplitude of probability is equM to 0.25 which does not change with the variation of parameter.
基金
Project supported by the Science and Technology Plan of Hunan Province,China (Grant No. 2010FJ3081)
the Natural Science Foundation of Hunan Province of China (Grant No. 11JJ3003)