期刊文献+

基于FSRM的相关反馈图像检索算法 被引量:7

Relevance Feedback Algorithm Based on Fuzzy Semantic Relevance Matrix in Image Retrieval
下载PDF
导出
摘要 在基于内容的图像检索中,低层视觉特征和高层语义之间的"语义鸿沟"一直是基于内容图像检索技术前进的一大障碍。相关反馈机制在一定程度上缩小了图像检索中的"语义鸿沟"。提出了一种基于模糊语义相关矩阵(FS-RM)的相关反馈算法。该算法根据用户对检索结果的反馈调整模糊语义相关矩阵中的权值,从而捕捉用户的检索企图,通过对模糊语义相关矩阵中数据的学习不断修正语义矩阵,达到低层视觉特征到高层语义特征的过渡,最终提高了查询的准确度。实验结果证明了该算法的有效性。 The semantic gap between low level visual features and high level semantic concepts is an obstacle to the development of image retrieval.Relevance feedback techniques narrow the semantic gap to some extent.A relevance feedback algorithm was presented based on fuzzy semantic relevance matrix(FSRM).During the retrieval process,the weights in the FSRM are adjusted according to user’s feedback and the FSRM are modified by learning more time.Experimental results show the effectiveness of the algorithm.
出处 《计算机科学》 CSCD 北大核心 2012年第B06期540-542,共3页 Computer Science
基金 重庆自然科学基金计划项目(2009BB2006) 西南大学基本科研业务费专项资金项目(2010C028)资助
关键词 基于内容的图像检索 语义鸿沟 相关反馈 模糊语义相关矩阵 CBIR; Semantic gap; Relevance feedback; Fuzzy semantic relevance matrix
  • 相关文献

参考文献8

  • 1Carneiro G, Chan A B, Moreno P J, et al. Supervised Learning of Semantic Classes for Image Annotation and Retrieval[J]. IEEE Tranxaetion on Pattern Analysis and Machine Intelligence, 2007,29 : 545-554.
  • 2Fechser S, Chang R, Qi Xiao-jun. Inter-query Semantic Learning Approach to Image Retrieval [C]//IEEE Int. Conf. on Acoustics, Speech, and Signal Processing ( ICASSP' 10 ). 2010 : 1246-1249.
  • 3Han J, Ngan K N, Li M, et al. A memory learning framework for effective image retrieval[J]. IEEE Transactions on Image Processing,USA, 2005,14(4) :511-524.
  • 4Muller H, Muller W, Squire D M, et al. Performance evaluation in content-based image retrieval: overview and proposals[J]. Pattern Recognition Letters, 2001,22 : 593-601.
  • 5Smeulders A W M, Worring M, Santini S, et al. Content-based image retrieval at the end of the early years[J]. IEEE Transactions on pattern Analysis and Machine Intelligence, 2000, 22: 624-639.
  • 6张磊,林福宗,张钹.基于支持向量机的相关反馈图像检索算法[J].清华大学学报(自然科学版),2002,42(1):80-83. 被引量:39
  • 7曹奎,冯玉才,王元珍.图像检索中一种新的相关反馈机制[J].计算机科学,2002,29(1):65-68. 被引量:7
  • 8彭祖赠.模糊数学及其应用[M].武汉:武汉大学出版社,2003..

二级参考文献20

  • 1[1]Rui Y,Huang T S,Ortega M,et al.Relevance feedback: A power tool in int eractive content-based image retrieval [J].IEEE Trans on Circuits and Syst fo r Video Tech,1998,8(5): 644-655.
  • 2[2]Rui Y,Huang T S.A novel relevance feedback technique in image retrieval [A].Proc 7th ACM Int Conf on Multimedia (part 2) [C].Orlando,Florida,199 9.67-70.
  • 3[3]Ishikawa Y,Subramanya R,Faloutsos C.Mindreader: Query Databases Through Multiple Examples [A].Proc 24th Int Conf on Very Large Databases [C].New York,1998.218-227.
  • 4[4]Vapnik V.The Nature of Statistical Learning Theory [M].New York: Sprin ger Verlag,1995.
  • 5[5]Burges C J C.A tutorial on support vector machines for pattern recognitio n [J].Data Mining and Knowledge Discovery,1998,2(2): 1-47.
  • 6[6]Osuna E.Applying SVMs to face detection [J].IEEE Intelligent Systems,1998,13(4): 23-26.
  • 7[7]Chapelle O,Haffner P,Vapnik V.Support vector machines for histogram-bas ed image classification [J].IEEE Trans on neural networks,1999,10(5): 1057 -1064.
  • 8[8]Huang J,Kumar S R,Mitra M,et al.Image indexing using color correlogram s [A].Proc.of IEEE conf.on Computer Vision and Pattern Recognition [C].S an Juan,Puerto Rico,1997.762-768.
  • 9Niblack W,et al.The QBIC project:querying images by content using color,texture and shape.SPIE Proc.Storage and Retrieval for Image and Video Databases,1993.173~ 187
  • 10Pentland A,Picard R,Scharoff S.Photobook:Content-based manipulation of image databases.International Journal of Computer Vision,1996,18(3): 233~254

共引文献53

同被引文献81

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部