期刊文献+

An improved surface-plasmonic nanobeam cavity for higher Q and smaller V 被引量:4

An improved surface-plasmonic nanobeam cavity for higher Q and smaller V
下载PDF
导出
摘要 We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal(SP3C) nanobeam cavity.The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain(3D-FDTD) method.The results show that a Q-factor of 2076 and a modal volume V of 0.16(/2n) 3 can be achieved in a 50 nm silica-gap hybrid SP3C nanobeam cavity when it operates at telecommunications wavelengths and at room temperature.V can be further reduced to 0.02(/2n) 3 when the silica thickness decreases to 10 nm,which leads to a Q/V ratio that is 11 times that of the corresponding plasmonic-photonic nanobeam cavity(without silica).The ultrahigh Q/V ratio originates from the low-loss nature and deep sub-wavelength confinement of the hybrid plasmonic waveguide,as well as the mode gap effect used to reduce the radiation loss.The proposed structure is fully compatible with semiconductor fabrication techniques and could lead to a wide range of applications. We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal (SP3C) nanobeam cavity. The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain (3D-FDTD) method. The results show that a Q-factor of 2076 and a modal volume V of 0.16(λ/2n)^3 can be achieved in a 50 nm silica-gap hybrid SP3C nanobeam cavity when it operates at telecommunications wavelengths and at room temperature. V can be further reduced to 0.02(λ/2n)^3 when the silica thickness decreases to 10 nm, which leads to a Q/V ratio that is 11 times that of the corresponding plasmonic-photonic nanobeam cavity (without silica). The ultrahigh Q/V ratio originates from the low-loss nature and deep sub-wavelength confinement of the hybrid plasmonic waveguide, as well as the mode gap effect used to reduce the radiation loss. The proposed structure is fully compatible with semiconductor fabrication techniques and could lead to a wide range of applications.
出处 《Chinese Science Bulletin》 SCIE CAS 2012年第25期3371-3374,共4页
基金 supported by the National Natural Science Foundation of China (60977043) the National High Technology Research and Development Program of China (2012AA012203) the Open Fund of the State Key Laboratory of China on Integrated Optoelectronics
关键词 表面等离激元 高Q值 谐振腔 纳米 有限差分时域法 半导体制造技术 表面等离子体 optical cavity surface plasmon polariton Q-factor modal volume slot waveguide
  • 相关文献

参考文献31

  • 1Vahala K. Optical Microcavities. Singapore: World Scientific, 2004.
  • 2Vahala K. Nature, 2003, 424: 839-846.
  • 3Deotare P B, McCutcheon M W, Frank I W, et al. Appl Phys Lett, 2009,94: 121106.
  • 4Quan Q, Deotare P B, Loncar M. Appl Phys Lett, 2010, 96: 203102.
  • 5Belotti M, Galli M, Gerace D, et al. Opt Express, 2010, 18: 1450- 1461.
  • 6Velha P, Rodier J C, Lalanne P, et al. New J Phys, 2006,8: 204.
  • 7Md Zain A R, Johnson N P, Sorel M, et al. IEEE Photon Tech Lett, 2009,21: 1789-1791.
  • 8Eichenfield M, Camacho R, Chan J, et al. Nature, 2009, 459: 550- 555.
  • 9Velha P, Picard E, Charvolin T, et al. Opt Express, 2007, 15: 16090- 16096.
  • 10Richards B C, Hendrickson J, Olitzky J D, et al. Opt Express, 2010, 18:20558-20564.

同被引文献31

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部