期刊文献+

计算机视觉技术在海产品质量评估中的应用 被引量:11

Application of computer vision technology on quality evaluation of seafood
下载PDF
导出
摘要 传统的海产品分类及质量检验主要是采用人工方法,靠肉眼进行判断,需耗费大量的人力,且劳动强度大、效率低。采用计算机视觉技术对海产品进行自动分类与质量评估可有效克服上述缺点。通过提取海产品的尺寸、形状、颜色、纹理等特征,结合预测模型,采用数字图像处理的方法可实现海产品的无接触、无损伤处理。文章分析基于计算机视觉技术的海产品分类及质量评估系统的构成,并通过实例分析阐述其具体实现方法,论证该方法的有效性。 The traditional method of classification and quality control is mainly used artificial means judging by the naked eye which would spend a lot of manpower with labor-intensive and inefficient. The disadvantage can be overcome by using the system based on computer vision technology, which can achieve the automatic classification and quality assessment of seafood. The methods of digital image process- ing were used to extract the size, shape, color, texture and other characteristics of the seafood. Combining with predictive models, the seaf^3od ear~ be classified in a non-contact and non-destructive man- ner. This paper analyzes the composition of classification and quality assessment system according to seafood based on computer vision technology. The feasibility of the system is described by the analysis of the examples which also demonstrates the effectiveness of this technique.
出处 《食品与机械》 CSCD 北大核心 2012年第4期154-156,共3页 Food and Machinery
关键词 计算机视觉 海产品 质量评估 图像处理 computer vision seafood quality evaluation image processing
  • 相关文献

参考文献19

  • 1Da-Wen Sun. Computer vision technology for food quality evalua- tion, food science and technology: international series[M]. Dublin Elsevier Press, 2007.
  • 2J M Aguilera, V Briones. Computer vision and food qualityEJ-. Food Australia, 2005, 57(3) -79-87.
  • 3Chong V K, Kondo N, Ninomiya K. Features extraction for egg- plant fruit grading system using machine vision[J]. Applied Engi- neering in Agriculture, 2008, 24(5):675-684.
  • 4Blasco J ,Cuhero S. Development of a machine for the automatic sorting of pomegranate (Punica granatum)arils based on comput er vision[J]. Journal of Food Engineering,2009,90(7):27-34.
  • 5高彩云,高满屯,王少卫.机器视觉中特征点提取算法的探讨[J].计算机仿真,2009,26(10):233-236. 被引量:7
  • 6李伟,康晴晴,张俊雄,荀一.基于机器视觉的苹果表面纹理检测方法[J].吉林大学学报(工学版),2008,38(5):1110-1113. 被引量:27
  • 7Xu Liming, Zhao Yanchao. Automated strawberry grading sys- tem based on image processing[J]. Computers and Electronics in Agriculture, 2010,71(8) :32-39.
  • 8Tu K, Ren K, Pan L Q, et al. A study of broccoli grading sys- tem based on machine vision and neural networks[C]//Proeeedings of the 2007 IEEE International Conference on Mechatronics and Automation. [s. n. ]: [S. l. ], 2007:2 332--2 336.
  • 9安爱琴,余泽通,王宏强.基于机器视觉的苹果大小自动分级方法[J].农机化研究,2008,30(4):163-166. 被引量:39
  • 10林开颜,吴军辉,徐立鸿.基于计算机视觉技术的水果形状分级方法[J].农业机械学报,2005,36(6):71-74. 被引量:46

二级参考文献64

共引文献364

同被引文献140

引证文献11

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部