期刊文献+

随机场的随机谐和函数表达 被引量:8

Simulation of Multi-dimensional Random Fields by Stochastic Harmonic Functions
下载PDF
导出
摘要 首先证明,采取随机谐和函数表述二维随机场,则当随机波数与相位服从独立均匀分布、幅值由随机波数和目标功率谱密度共同决定时,随机谐和函数的功率谱密度精确地等于目标功率谱密度.对这类随机谐和函数的平稳性和渐进正态性进行了讨论.进而,将二维随机场的随机谐和函数表达推广至多维,给出了统一表达式.最后,通过数值算例验证了采用随机谐和函数表述随机场的正确性. When the random phase angles and random circular frequencies are independent and uniformly distributed,the amplitude can be obtained by the target power spectral density function and the random circular frequencies specifically in the two-dimensional random field.Meanwhile,the power spectral density function is equal to the target one.Then,stochastic harmonic random field proves to be asymptotic to the normal distribution.In addition,the stochastic harmonic functions can be expanded into multi-dimensional random fields by the uniformed expression.Finally,several numerical examples are given to validate the stochastic harmonic function.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期965-970,995,共7页 Journal of Tongji University:Natural Science
基金 国家"八六三"高技术研究发展计划(2008AA05Z413) 国家自然科学基金(90715033)
关键词 随机场 随机谐和函数 功率谱密度 平稳性 渐进正态性 random field stochastic harmonic function power spectral density function stationary asymptotic normality
  • 相关文献

参考文献14

  • 1李杰.混凝土随机损伤力学的初步研究[J].同济大学学报(自然科学版),2004,32(10):1270-1277. 被引量:50
  • 2Shinozuka M, Jan C M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25(1): 111.
  • 3Huang S P, Quek S T, Phoon K K. Convergence study of the truncated Karhunen-Loeve expansion for simulation of stochastic processes [J]. International Journal for Numerical Methods in Engineering, 2001, 52(9): 1029.
  • 4李杰,刘章军.基于标准正交基的随机过程展开法[J].同济大学学报(自然科学版),2006,34(10):1279-1283. 被引量:35
  • 5Grigoriu M. Evaluation of Karhunen-Loeve, spectral, and sampling representations for stochastic processes [J]. Journal of Engineering Mechanics, 2006, 132(2): 179.
  • 6Goto H, Toki K. Structural response to nonstationary random excitation[C]//World of Earthquake Conference Engineering, 4th. Santiago: [s.n.], 1969: 130-144.
  • 7Shinozuka M, Deodatis G. Simulation of stochastic processes by spectral representation [ J ]. Applied Mechanics Reviews, 1991, 44(4): 191.
  • 8Shinozuka M, Deodatis G. Simulation of multi-dimensional Gaussian stochastic fields by spectral representation [J ]. Applied Mechanics Reviews, 1996, 49(1), 29.
  • 9陈建兵,李杰.随机过程的随机谐和函数表达[J].力学学报,2011,43(3):505-513. 被引量:16
  • 10孙伟玲,陈建兵,李杰.随机过程的第二类随机谐和函数表达[J].同济大学学报(自然科学版),2011,39(10):1413-1419. 被引量:10

二级参考文献59

  • 1李杰,陈建兵.随机结构非线性动力响应的概率密度演化分析[J].力学学报,2003,35(6):716-722. 被引量:65
  • 2李杰,刘章军.基于标准正交基的随机过程展开法[J].同济大学学报(自然科学版),2006,34(10):1279-1283. 被引量:35
  • 3张猛,张哲,李天.与规范反应谱相对应的Clough-Penzien模型参数研究[J].世界地震工程,2007,23(1):56-60. 被引量:12
  • 4李杰.工程结构随机动力激励的物理模型.随机振动理论与应用新进展[C].上海:同济大学出版社,2009.
  • 5Li J, Chen JB. Probability density evolution method for dynamic response analysis of structures with uncertain pa- rameters. Computational Mechanics, 2004, 34:400-409.
  • 6Li J, Chen JB. Stochastic Dynamics of Structures. Singa- pore: John Wiley & Sons, Inc., 2009.
  • 7Bendat JS, Piersol AG. Random Data: Analysis and Mea- surement Procedures. 3rd edn. New York: John Wiley &= Sons, Inc., 2000.
  • 8Huang SP, Quek ST, Phoon KK. Convergence study of the truncated Karhunen-Loeve expansion for simulation of stochastic processes. International Journal for Numerical Methods in Engineering, 2001, 52(9): 1029-1043.
  • 9Grigoriu M. Evaluation of Karhunen-Lo@ve, spectral, and sampling representations for stochastic processes. Journal of Engineering Mechanics, 2006, 132(2): 179-189.
  • 10Shinozuka M, Deodatis G. Simulation of stochastic pro- cesses by spectral representation. Applied Mechanics Re- view, 1991, 44(4): 191-204.

共引文献100

同被引文献81

引证文献8

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部