期刊文献+

基于结点6自由度的分裂导线有限元模型 被引量:17

FINITE ELEMENT MODEL OF BUNDLE LINES BASED ON 6-DOF NODE
原文传递
导出
摘要 大跨越输电线路分裂导线较单导线更容易发生舞动现象,基于空间曲梁理论,建立了结点6自由度的导线有限元模型。假定间隔棒为刚性体,根据位移协调条件,建立了4分裂导线的有限元模型。通过虚功原理建立静力有限元方程,采用Newton-Raphson迭代法进行静力非线性求解。算例表明:采用曲梁模型研究输电线的平动位移是准确的。由于考虑了平动与扭转的耦合作用,扭转角的计算更加精确。输电线抗弯刚度对扭转角也有较大影响。分裂导线的参数分析表明,弧垂、分裂间距、边界条件等对抗扭刚度均有较大的影响,间隔棒的数量不能显著提高导线的抗扭刚度。 Long span transmission bundle lines will more easily suffer galloping phenomenon than a single wire Based on space-curved-beam theory, the finite element model based on 6-DOF node is built to simulate a transmission line. The spacers are assumed as a rigid body, and the finite element model of 4-bundle conductors is established according to the displacement compatibility conditions. The static finite element equation is built through the virtual work principle and solved by the Newton-Raphson iterative method. The results of examples show that the curved beam model of a transmission line is accurate to calculate the translational displacement. Considering the coupling of the translational and torsional deformation, torsion angle calculations are more precise, and the bending stiffness of the transmission line will also affect the torsional angle. The results for the parameter analysis of bundle conductors show that sags, split spacings, spacers, and boundary conditions have more great influence on the torsional stiffness, whileas the number of spacers cannot significantly increase conductor torsional stiffness.
出处 《工程力学》 EI CSCD 北大核心 2012年第8期325-332,共8页 Engineering Mechanics
基金 中央高校基本科研业务费项目(CDJZR11200015) 国家自然科学基金项目(51178489)
关键词 曲梁 输电线 有限元模型 分裂导线 非线性 curved beam transmission line finite element model bundle lines nonlinear
  • 相关文献

参考文献14

  • 1Irvine H M. Cable structures [M]. New York: MIT Press, 1981.
  • 2Desai Y M, Yu P, Popplewell N, et al. Finite element modeling of transmission line galloping [J]. Computers and Structures, 1995, 57(3): 407--420.
  • 3Desai Y M, Yu P, Shan A H, Popplewell N. Perturbation- based finite element analyses of transmission lines galloping [J]. Journal of Sound and Vibration, 1996, 191(4): 469--489.
  • 4McConnell K G, Chang C N. A study of the axial- torsional coupling effect on a sagged transmission line [J]. Experimental Mechanics, 1986, 26(4): 324--329.
  • 5Luongo Angelo, Daniele Zulli, Giuseppe Piccardo. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables [J]. Journal of Sound and Vibration, 2008, 315: 375-- 393.
  • 6Luongo Angelo, Daniele Zulli, Giuseppe Piccardo. On the effect of twist angle on nonlinear galloping of suspended cables [J]. Computers and Structures, 2009, 87(15/16): 1- 12.
  • 7何锃,赵高煜,李上明.大跨越分裂导线的静力求解[J].中国电机工程学报,2001,21(11):34-37. 被引量:33
  • 8白海峰,李宏男.分裂式覆冰导线横风弛振响应研究[J].振动工程学报,2008,21(3):298-303. 被引量:15
  • 9Wang Jianwei, Lilien Jean-Louis. A new theory for torsional stiffness of mulit-span bundle overhead transmission lines [J]. IEEE Transaction on Power Delivery, 1998, 13(4): 1405-- 1411.
  • 10Keutgen Renaud, Lilien Jean-Louis, Teruhiro Yukino. Transmission line torsional stiffness. Confrontation of field-tests line and finite element simulations [J]. IEEE Transaction on Power Delivery, 1999, 14(2): 567--578.

二级参考文献15

  • 1白海峰,李宏男.大跨越输电塔线体系随机脉动风场模拟研究[J].工程力学,2007,24(7):146-151. 被引量:45
  • 2能源部东北电力设计院,电力工程高压送电线路设计手册,1991年
  • 3Den-Hartog J P. Transmission line vibration due to sleet[J]. Trans. AIEE, 1932,51, (Part 4), 1 074- 1 086.
  • 4Nigol O, Buchan P G. Conductor galloping: 1. Den Hartog mechanism[J]. IEEE Trans. on Power Apparatus and System, 1981,100(2) : 699--707.
  • 5Nigol O, Buchan P G. Conductor galloping: 2. Tosional mechanism[J]. IEEE Trans. on Power Apparatus and System, 1981,100(2) : 708-720.
  • 6Yu P, Shah A H, Popplewell N. Inertially coupled galloping of iced conductors[J]. App. Mech. -tram of the ASME, 1992,59(1) : 140-145.
  • 7Yu P, Popplewell N, Shah A H. Instability trends of inertially coupled galloping. 2. Periodic Vibrations[J]. Sound and Vib.,1995,183(4):679--691.
  • 8Desai Y M, Yu P, Popplewell N, et al. Finite-element modeling of transmission-line galloping [J]. Comput. & Struet. , 1995,57(3) :407-420.
  • 9Desai Y M, Yu P, Shah A H, et al. Perturbationbased finite element analyses of transmission line galloping[J]. Sound and Vib. , 1996,191 (4) : 469-489.
  • 10Zhang Q, Popplewell N, Shah A H. Galloping of bundle conductor[J]. Sound and Vibr. ,2000,234(1): 115-134.

共引文献45

同被引文献164

引证文献17

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部