期刊文献+

BP神经网络优化桔子皮水溶性膳食纤维的提取工艺 被引量:4

Optimization of extraction process of soluble dietary fiber from orange peel based on BP neural network
原文传递
导出
摘要 为提高柑桔副产物的加工综合利用,以超临界CO2萃取精油后的桔子皮为原料提取水溶性膳食纤维,采用响应面实验设计收集实验数据,利用BP神经网络的自学习能力,通过仿真和评估,优化其提取工艺参数。结果表明:BP神经网络技术比响应面分析方法误差小,模型预测准确度高,桔子皮水溶性膳食纤维的最佳提取工艺条件为:温度91.5℃,pH1.60,均质压力30.5MPa,提取时间2.14h,在此条件下,水溶性膳食纤维的得率为28.79%。该研究为柑桔皮水溶性膳食纤维的工业化提取提供一定的技术依据。 In order to obtain optimum condition for soluble dietary fiber from orange peel extracted by fluid CO2,BP Neural Network(BPNN)combined with response surface methodology(RSM)was put forward as a new method to analyze and process test data.The response surface test data could be used by applying the self-learning ability of BPNN.With the help of BPNN,which simulated,evaluated and optimized,the result of experiment showed that BPNN had the less errors than RSM.The optimum conditions for soluble dietary fiber from orange peel were as follows:temperature 91.5℃,pH1.60,homogenized pressure 30.5MPa,and time 2.14h.The experiment was accomplished under optimum conditions,the yield of soluble dietary fiber was 28.79%.In conclusion,BPNN provided a technonical basis for industrialization production of soluble dietary fiber from orange peel.
出处 《食品工业科技》 CAS CSCD 北大核心 2012年第15期258-262,共5页 Science and Technology of Food Industry
基金 国家科技部科技人员服务企业行动项目(2009GJD20017)
关键词 BP神经网络 水溶性膳食纤维 桔子皮 响应面 均质 BP neural network soluble dietary fiber orange peel response surface homogenize
  • 相关文献

参考文献16

二级参考文献139

共引文献183

同被引文献76

  • 1李志美.核桃的开发利用[J].林业调查规划,2004,29(B05):199-201. 被引量:30
  • 2王仲礼.前景广阔的食糖替代品——木糖醇[J].江苏调味副食品,2005,22(2):1-4. 被引量:16
  • 3汪志君,韩永斌,顾振新,张丽华.响应面法优化猕猴桃果浆酶解工艺参数研究[J].食品科学,2006,27(10):326-330. 被引量:20
  • 4张德丰.MATLAB神经网络应用设计[M].北京:机栩工业出版社,2008:20-30.
  • 5李明雨,李勇,蒋宝锋.MATLAB2008数学和控制实例教程[M].北京:化学工业出版社,2009.
  • 6Francisco Perez-Vizcaino, Juan Duarte. Flavonols and cardiovascular disease[J]. Molecular Aspects of Medicine, 2010, 31 : 478-494.
  • 7Fufeng Chen,Hui Xiong,Jianxia Wang,et al. Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats[J]. Journal of Ethnopharmacology, 2013,149.729-736.
  • 8Ze-Mu Wang,Zhen-Lin Nie, Bo Zhou,et al. Flavonols intake and the risk of coronary heart disease:a meta-analysis of cohort studies[J]. Atherosclerosis, 2012,222 : 270-273.
  • 9Desai K M,Survase S A,Saudagar P S,et al. Comparison of artificial neural network(ANN ) and response surface methodology (RSM) in fermentation media optimization:Case study of fermentative production of scleroglucaan [J]. Biochemical Engineering Journal, 2008,41 ( 3 ) : 266-273.
  • 10Yu S W, Guo X F, Zhu K J, et al. A neuro-fuzzy GA-BP method of seismic reservoir fuzzy rules extraction. ExpertSystems with Applications, 2010,37( 3 ) : 2037-2042.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部