期刊文献+

基于方差权重矩阵模型的高维数据子空间聚类算法 被引量:3

High dimensional subspace clustering algorithm WM-FCM based on variance weight matrix
下载PDF
导出
摘要 在处理高维数据时,聚类的工作往往归结为对子空间的划分问题。大量的真实实验数据表明,相同的属性对于高维数据的每一类子空间而言并不是同等重要的,因此,在FCM算法的基础上引入了方差权重矩阵模型,创造出了新的聚类算法称之为WM-FCM。该算法通过不断地聚类迭代调整权重值,使得其重要的属性在各个子空间内更为显著地表征出来,从而达到更好的聚类效果。从基于模拟数据集以及UCI数据集的实验结果表明,该改进的算法是有效的。 In dealing with high-dimensional data, clustering can be viewed as finding out an appropriate subspace division. However, lots of real experimental data show that for different classes of the high dimensional data subspaces, the same attributes are not equally important. This paper presented the new high dimensional subspace clustering algorithm WM-FCM, which integrated the FCM clustering algorithm with the proposed variance weight matrix model. Through continuous clustering iterations,the algorithm adjusted the weights of attributes of each subspaee so that important attributes became more significant, thus led to better performance of subspace clustering. The experimental results on artificial data sets and UCI ( University of California,Irvine) data sets show that the presented algorithm WM-FCM is effective.
出处 《计算机应用研究》 CSCD 北大核心 2012年第8期2868-2871,2881,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(90820002) 江苏省自然科学基金资助项目(BK2009067)
关键词 子空间聚类 方差权重矩阵 模糊C-均值聚类 高维数据 subspace division variance weight matrix fuzzy C-means(FCM) high-dimensional data
  • 相关文献

参考文献14

  • 1GIANNAKOPOULOS T, PETRIDIS S. Unsupervised speaker cluste- ring in a linear discriminant subspace[ C ]//Proc of the 9th Interna- tional Conference on Machine Learning and Applications. 2010:1005- 1009.
  • 2DENG Zhao-hong,CAI Ji-shi,CHUNG F L,et al. Enhanced soft sub- space clustering integrating within-cluster and between-cluster infor- mation[ J]. Pattern Recognition ,2010,43 ( 3 ) :767-781.
  • 3RAJINI N H, BHAVANI R. Enhancing K-means and kernelized fuzzy C-means clustering with cluster center initialization in segmenting MRI brain images[ C]//Proc of the 3rd International Conference on Elec- tronics Computer Technology. 2011:259-263.
  • 4WEI Lai, ZENG Wei-ming, WANG Hong. K-means clustering with manifold[ C]//Proc of the 7th International Conference on Fuzzy Sys- tems and Knowledge Discovery. 2010:2095-2099.
  • 5LIN Y H, TSAI M S, CHIN C S. Applications of fuzzy classification with fuzzy C-means clustering and optimization strategies for load iden- tification in NILM systems [ C ]//Proc of IEEE International Confe- rence on Fuzzy Systems. 2011 : 859- 866.
  • 6HALL L O, GOLDGOF D B. Convergence of the single-pass and on- line fuzzy C-means algorithms[ J]. IEEE Trans on Fuzzy Systems, 2011,19(4) :?92-794.
  • 7DOMENICONI C, GUNOPULOS D, MA Sheng,et al. Locally adaptive metrics for clustering high dimensional data [ J ]. Data Mining and Knowledge Discovery,2007,14 ( 1 ) :63-97.
  • 8DOMENICONI C, PAPADOPOULOS D, GUNOPULOS D, et al. Sub-space clustering of high dimensional data[ C]//Proc of SIAM Interna- tional Conference on Data Mining. 2004:517-521.
  • 9GAN Guo-jun, WU Jian-hong. A convergence theorem for the fuzzy subspaee clustering ( FSC ) algorithm [ J ]. Pattern Recognition, 2008,41 (6) :1939-1947.
  • 10ASUNCION A, NEWMAN D J. UCI machine learning repository[ EB/ OL]. (2007). http://www, its. uei. edtt/~ mlearn/MLRepository. html.

同被引文献44

  • 1周煜人,彭辉,桂卫华.基于映射的高维数据聚类方法[J].计算技术与自动化,2005,24(2):78-80. 被引量:1
  • 2阳琳贇,王文渊.聚类融合方法综述[J].计算机应用研究,2005,22(12):8-10. 被引量:28
  • 3孙玉芬,卢炎生.一种基于网格方法的高维数据流子空间聚类算法[J].计算机科学,2007,34(4):199-203. 被引量:8
  • 4JAIN A K. Data clustering: 50 years beyond K-means[ J]. Pattern Recognition Letters ,2010,31 ( 8 ) :651-666.
  • 5JAIN A K, DUBES R C. Algorithms for clustering data[ M]. New Jersey : Prentice-Hall, 1988.
  • 6STREHL A, GHOSH J. Cluster ensembles:a knowledge reuse frame- work for combining multiple partitions [ J ]. Journal of Machine Learning Research ,2002,3( 1 ) :583-617.
  • 7LI Tao, OGIHARA M, MA Sheng. On combining multiple cluster- ings: an overview and a new perspective[ J]. Applied Intelligence, 2010,33(2) :207-219.
  • 8VEGA-PONS S, RUIZ-SHULCLOPER J. A survey of clustering en- semble algorithms [ J]. International Journal of Pattern Recogni- tion and Artificial Intelligence ,2011,25(3 ) :337-372.
  • 9AGRESTI A. An introduction to categorical data analysis [ M ]. 2nd ed. New Jersey: Wiley,2007.
  • 10HE Zeng-you, XU Xiao-fei, DENG Sheng-chun. A cluster ensemble method for clustering categorical data [ J ]. Information Fusion, 2005,6(2) :143-151.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部