期刊文献+

无人机螺旋桨气动力设计 被引量:9

Aerodynamic design of propeller for unmanned aerial vehicles
原文传递
导出
摘要 结合某太阳能无人机总体设计方案要求,完成了无人机动力系统螺旋桨气动力设计任务。采用Glauert提出的片条理论作为螺旋桨气动特性的计算方法,并通过算例验证了该方法的可靠性。为使螺旋桨在电机输出功率约束下、在整个飞行包线范围内维持较高的气动效率,低雷诺数、高升阻比桨叶基本翼型的设计和桨叶角分布的优化设计是关键。对设计结果进行的全面系统的分析评估表明:在不同飞行状态下以及电机额定输入功率范围内,螺旋桨效率始终维持在80%左右,且巡航状态下其效率的最佳点与电机的额定功率完全匹配。 Aerodynamic design of propeller for a solar powered unmanned aerial vehicle is accomplished in this paper.As the basis of aerodynamic design for propeller,the propeller performance prediction method is very important.By comparing several different aerodynamic theories for propellers,the strip theory based on Goldstein theory is adopted in this paper.The comparison of calculated result with the experimental data shows that,the strip theory is reliable to predict the aerodynamic performance of propeller.The key factor of the aerodynamic design is how to keep the propeller at cruise with high efficiency,under the output power restriction of the electromotor.The calculated results of the designed propeller show that at the field of entire flight envelop,the cruise efficiency of the designed propeller is about 80%,and the power used at the best cruise efficiency condition matches for the rated output power of the electromotor.
出处 《应用力学学报》 CAS CSCD 北大核心 2012年第4期380-385,483,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10772148 90816027 11172240)
关键词 螺旋桨 片条理论 低雷诺数 气动力设计 螺旋桨效率 propeller,strip theory,low Reynolds number,aerodynamic design,efficiency.
  • 相关文献

参考文献9

  • 1Bradley T H, Moffitt B A, Fuller T F. Comparison of design methods for fuel-cell-powered unmanned aerial vehicles[J]. Journal of Aircraft, 2009, 46 (6): 1945-1956.
  • 2Colozza A, Corportaion A. Overview of innovative aircraft power and propulsion systems and their applications for planetary exploration TM-2003-212459 [R]. Washington: NASA, 2003.
  • 3MoffittBA, BradleyTH, ParekhDE, etal. Validationofvortex propeller theory for UAV design with uncertainty analysis[C]// Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Rano, Nevada.. AIAA, 2008.
  • 4Hallissy J M, Chattot J J. Validation of a helicoidal vortex model with NREL unsteady aerodynamic experiment[C]// Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2005.
  • 5SmedresnanA, YeoD, ShyyW. Design, fabrication, analysis, and testing of a micro air vehicle propeller[C]//Procccdings of the 29thAIAAAppliedAerodynamicsConferencc. Honolulu, Hawaii: AIAA, 2011.
  • 6Hartman E P, Biermann D. The aerodynamic characteristics of full-scale propellers having 2, 3, and 4 blades of clark Y and R A F 6 airfoil sections No.640[R]. NACA, 1938.
  • 7HeineB, MackS, KurzA, etai. Aerodynamic scaling ofgeneral aviation airfoil for low reynolds number application[C]//Proceedings of the 38th Fluid Dynamics Conference and Exhibit. Seattle, Washington: AIAA, 2008.
  • 8Gopalarathnam A, Selig M S. Low-speed natural-laminar-flow airfoils: a case study in inverse airfoil design[J]. Journal of Aircraft, 2001, 38 (1): 57-63.
  • 9Liu Qing, Li Jie, Zhou Zhou. Low reynolds number high-lift airfoil design for HALE concept UAV[C]//Proceodings of the 24th AIAA Applied Aerodynamics Conference. San Francisco, California: AIAA, 2006.

同被引文献108

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部