摘要
[Objective] The study was to analyze functional components in improved barley grains. [Method] Genetic variations of functional components in grains among 629 barley improved lines from four continents were determined with DU640-type ultraviolet spectrophotometry (BECKMAN). [Result] The contents (mg/100 g) of total flavones and GABA in grains of Asian barley lines (123.09±29.56, 9.49±4.34) were significantly higher than that of American barley lines (103.85±22.33, 7.38±3.59), while no significant difference was observed between Asia/Americas and Europe (115.47±11.41, 9.66±3.98) and Australia (104.20±4.76, 8.83±3.41); furthermore, there was no significant difference of resistant starch content (%) in barley grains among four continents [Asia (1.63±1.44), America (1.54±1.13), Europe (1.20±0.85) and Australia (0.27±0.26)]. The contents (%) of resistant starch in grains of two-rowed barley (ssp. Hordeum distichon Koern., 1.45±1.20) was significantly lower than that of poly-rowed barley (ssp. Hordeum vulgare Orlov., 1.95±1.24). On the contrary, the content of total flavones in two-rowed lines (111.43±27.79 mg/100 g) was significantly higher than that of poly-rowed lines (102.15±14.95 mg/100 g), and the content of GABA in two-rowed lines (8.55±3.73 mg/100 g) was also significantly higher than that of poly-rowed lines (5.96±3.95 mg/100 g). There was the most significant correlation between GABA content and resistant starch (-0.21**)/total flavones content (0.12**, P<0.01, n=629). There were great genotype differences among the functional components in barley grains. The coefficient of variation (78.60%) and range (0-9.29%) of resistant starch (1.56±1.22%) were relatively large, including 11 high-resistant starch lines above 5%; the coefficient of variation (49.00%) and range (0-30.67 mg/100g) of GABA (8.00±3.92 mg/100 g) were also relatively large, including 26 lines with GABA higher than 15 mg/100 g; the coefficient of variation (23.63%) and range (58.44-236.91 mg/100 g) of total flavones (109.44±25.85 mg/100 g) was relatively small, including 14 lines with total flavones higher than 176 mg/100 g. [Conclusion] There are zonal and genotypic differences in the contents of of functional components in barley grains.
[目的]研究大麦改良品系籽粒功能成分。[方法]采用Beckman公司DU640型紫外-可见分光光度计测定了629份大麦改良品系籽粒功能成分及其遗传变异。[结果]籽粒总黄酮和GABA含量(mg/100g)亚洲大麦品系(123.09±29.56,9.49±4.34)极显著高于美洲大麦品系(103.85±22.33,7.38±3.59),但亚洲/美洲与欧洲和澳洲间差异不显著;大麦品系籽粒抗性淀粉含量(%)在亚洲、美洲、欧洲和澳洲间差异不显著。籽粒抗性淀粉二棱品系(1.45±1.20)极显著低于多棱品系(1.95±1.24),相反籽粒总黄酮二棱品系(111.43±27.79)极显著高于多棱品系(102.15±14.95),且籽粒-氨基丁酸二棱品系(8.55±3.73)也极显著高于多棱品系(5.96±3.95);大麦籽粒GABA含量与抗性淀粉(-0.21**)和总黄酮含量(0.12**)相关达极显著(P<0.01,n=629)。大麦籽粒功能成分基因型差异较大,其中抗性淀粉(1.56±1.22%)的变异系数(78.60%)及变幅(0~9.29%)相对较大,>5%高抗性淀粉种质11份;γ-氨基丁酸(8.00±3.92mg/100g)的变异系数(49.29%)及变幅(0~30.67mg/100g)也相对较大,>15mg/100g的GABA为26份;总黄酮(109.44±25.85mg/100g)的变异系数(23.63%)及变幅(58.44~236.91mg/100g)也相对较小,>176mg/100g黄酮14份。[结论]大麦籽粒功能成分含量存在基因型差异和地带性特征。
基金
国家大麦青稞产业技术体系(CARS-05)~~