期刊文献+

非下采样Contourlet变换域统计模型红外图像去噪 被引量:5

Infrared Image Denoising Based on Statistical Model in Nonsubsampled Contourlet Transform Domain
下载PDF
导出
摘要 对红外图像进行非下采样Contourlet变换,分析其系数的统计特征,采用广义高斯分布来模拟系数的概率分布。根据非下采样Contourlet变换的带通子带各方向能量不同的特点,提出修正的贝叶斯阈值公式,为了克服软、硬阈值函数的缺点,又提出一种具有可调节自适应性的新阈值函数,最后利用新阈值函数估计出不含噪声的变换系数,并通过非下采样Contourlet逆变换得到去噪后的红外图像。仿真实验表明,文中方法在峰值信噪比及视觉效果上均优于经典的小波阈值去噪算法。 Infrared image with white Gaussian noise is processed by nonsubsampled Contourlet transform. The statistical characteristic of its coefficients is analyzed and generalized Gaussian distribution is used to describe the probability distribution for coefficients. According to characteristics of different energies in each direction of the nonsubsampled Contourlet transform bandpass subbands, a modified Bayesian threshold formula is proposed. In order to overcome the shortcoming of the soft and hard thresholding function, then a new adjustable and adaptive thresholding function is presented. Lastly, the new thresholding function is used to estimate coefficients without noise, and inverse nonsubsampled Contourlet transformation is performed to get denoised infrared image. Experimental results show that our denoising algorithm outperforms the usual wavelet threshold denoising method in peak signal-to-noise ratio and visual quality
出处 《光电工程》 CAS CSCD 北大核心 2012年第8期46-54,共9页 Opto-Electronic Engineering
基金 安徽省教育厅重点科研项目(KJ2010A282) 安徽省自然科学基金资助项目(11040606M06)
关键词 非下采样CONTOURLET变换 红外图像 广义高斯分布 峰值信噪比 nonsubsampled Contourlet transform(NSCT) infrared image generalized Gaussian distribution peaksignal-to-noise ratio (PSNR)
  • 相关文献

参考文献13

二级参考文献123

共引文献356

同被引文献53

  • 1徐华楠,刘哲,胡钢.Contourlet变换及其在图像去噪中的应用研究[J].计算机应用研究,2009,26(2):401-405. 被引量:15
  • 2吴新社,蔡毅.红外凝视成像系统中的光学微扫描技术[J].红外与毫米波学报,2007,26(1):10-14. 被引量:28
  • 3Satish Chandra D V. Image enhancement and noise reduction using wavelet transform [C]// Proc. of the 40th Midwest Symposium on Circuits and Systems, Sacramento, California, USA, Aug 3-6, 1997, 2: 989-992.
  • 4Schilling D, Cosman P. Edge-Enhanced Image Coding for Low Bit Rates [C]//IEEE International Conference on Image Proeessing, Kobe, Japan, Oct24-28, 1999, 3: 747-751.
  • 5Eslami R, Radha H. Wavelet-based Contourlet Transform and Its Application to Image Coding [C]// Proc. of IEEE International Conference on Image Processing, Singapore, Oct 24-27, 2004, 5: 3189-3192.
  • 6Eslami R, Radha H. Wavelet-based Contourlet Coding using an SPIHT-like Algorithm [C]// Proe. of Conference on Information Seienees and Systems, Princeton, NJ, USA, Mar, 2004: 784-788.
  • 7Eslami R, Radha H. Wavelet-based Contourlet Packet Image'Coding [C]//Proc. of Conference on Information Sciences and Systems, Baltimore, MD, USA, Mar 16-18, 2005.
  • 8Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on ImageProcessing(S1057-7149), 2005, 14(12): 2091-2106.
  • 9Do M N. Contourlets and sparse image Expansions [J]. Processing of SPIE(S0277-786X), 2003, 5207: 560-570.
  • 10Mallat S G. A theory for multiresolution signal decomposition: The wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1989, 11(7): 674-693.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部