期刊文献+

成像降质效应对前视红外图像质量的影响分析

Analysis of Imaging Degradations Effect on the Quality of Forward Looking Infrared Image
下载PDF
导出
摘要 前视红外图像质量对于目标检测与跟踪算法能否准确定位目标具有十分重要的作用。目前对自动目标识别领域前视红外图像质量的研究大都与场景内容相关,而忽视了成像降质效应对图像质量的影响。本文通过分析噪声和模糊两种降质效应的成因,结合前人的模拟方法,得到了高性能前视红外成像设备获取的图像中噪声和模糊模拟的新方法。将该方法用于分析不同程度噪声和模糊对图像质量的影响,结果显示,噪声对于图像质量有害,而模糊对于图像质量并不一定有害。基于这一结论,采用去噪方法对前视红外图像进行预处理。对比实验结果表明,该方法比去模糊方法能更有效地提高匹配概率。 Forward Looking Infrared (FLIR) image quality is of great importance for the detection and tracking algorithms to accurately locate the targets. In the field of Automatic Target Recognition (ATR), present researches on FLIR image quality are mainly related to the content of the scene, while ignoring the influence of imaging degradations on image quality. Through analysis of the cause of noise and blur, and combination with the former simulation methods, a new method was established for noise and blur simulation in images acquired by high-performance FLIR equipment. This method has been applied to analyze the effect of different degrees of noise and blur on image quality, and it can be concluded that noise has adverse effect on image quality, while blur is not always deleterious. Based on this conclusion, denoising method has been adopted in the preprocessing of FLIR image. Comparison among experimental results reveals that denoising method can improve the matching probability more effectively than sharpening method.
出处 《光电工程》 CAS CSCD 北大核心 2012年第8期55-62,共8页 Opto-Electronic Engineering
关键词 前视红外 降质效应 噪声 模糊 图像质量 forward looking infrared degradations noise blur image quality
  • 相关文献

参考文献16

  • 1LI Min, ZHANG Gui-lin. Image measures for segmentation algorithm evaluation of automatic target recognition system [C]// The First International Symposium on Systemsand Control in Aerospace and Astronautics, Harbin, China, Jan 19-21, 2006: 674-679.
  • 2Clark L G, Velten V J. Image characterization for automatic target recognition algorithm evaluations [J]. Optical Engineering(S0091-3286), 1991, 30(2): 147-153.
  • 3Lucero A B, Silverman G B, Bair R R, et al. Image metrics, AD-A192213[R]. California: Electro-Mechanical Division, Northrop Corporation, 1986.
  • 4Chen X, Schmid N A. Automatic target recognition performance losses in the presence of atmospheric and camera effects [J]. Journal of Electronic Imaging (S1017-9909), 2010, 19(2): 023016.
  • 5邹前进,冯亮,汪亚.红外图像空间噪声分析和预处理方法改进[J].应用光学,2007,28(4):426-430. 被引量:27
  • 6Lanterman A D, Miller M I, Snyder D L. Automatic target recognition via the simulation of infrared scenes [C]//The Sixth Annual Ground Target Modeling and Validation Conference, Michigan: Citeseer, 1995: 195-203.
  • 7Powell G, Martin R, Marshall D, et al. Simulation of FLIR and LADAR data using graphics animation software [C]//The Eighth Pacific Conference on Computer Graphics andApplieations, Hong Kong: IEEE, 2000: 126-134.
  • 8曾朝阳,贾云鹤,戴琼松,郭海冰.红外图像模拟中的红外光学系统影响分析[J].激光与红外,2009,39(10):1108-1111. 被引量:4
  • 9Namuduri K R, Bouyoucef K, Kaplan L M. Image metrics for clutter characterization [C]//2000 International Conference on Image Proeessing, Sept 10-13, 2000, 2: 467-470.
  • 10刘婧,孙继银,朱俊林,杨威.基于模板匹配的前视红外目标识别方法[J].弹箭与制导学报,2010,30(1):17-19. 被引量:13

二级参考文献73

共引文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部