期刊文献+

聚光集热系统统一MCRT建模与聚光特性 被引量:4

Studies on concentrating solar collectors with a new modelling method and unified MCRT code
原文传递
导出
摘要 针对太阳能热发电站中各种聚光集热系统及其光能聚集与光热转换复杂过程,提出了一种新的统一建模方法以及与其对应的自编程统一蒙特卡罗光线追迹(MCRT)计算方法.即根据系统组成特性与光子传播简化计算原则,将其细分为由不同数量表面组成的各个子系统层次,采用统一的4阶方程与层次/表面编号形式、表面特征与光学参数变量等建立统一的系统几何模型与光学模型,设计开发具有统一求解交点、统一光学事件判断与计算、统一计算考核等通用模块的统一MCRT计算方法与程序.在此基础上,将该统一MCRT建模方法与程序应用于3种典型聚光集热系统,计算考核结果表明,该方法与程序具有较好的通用性和较高的准确性,所获得聚光特性进一步或可有效用于指导各种太阳能聚光集热系统应用选型或设计计算. In this paper, a new modelling method and homemade unified code with the Monte Carlo Ray-Trace (MCRT) method for concentrating solar collectors (CSCs) with the involuted solar concentrating and photo-thermal conversion process are presented. According to system characteristics and the principle of simplification for photon propagation, the CSCs are divided into a sequence of subsystems/layers with different numbers of surfaces. Corresponding geometrical models and optical models are built up by unified forms of four order equations, layers/surfaces numbering, variables of geometrical characteristics and optical properties, etc. Based on this, the corresponding unified MCRT code is developed, mainly including the unified solving method on intersection, unified judgment and calculation on optical events, and unified criteria of code checking, etc. Then the proposed method and code are applied to simulate and analyze the involuted solar concentrating and photo-thermal conversion process in three typical CSCs. Numerical checks and results show that the proposed modelling method and code are reliable to simulate various types of CSCs or design new CSCs.
出处 《科学通报》 CAS CSCD 北大核心 2012年第22期2127-2136,共10页 Chinese Science Bulletin
基金 国家自然科学基金(51176155) 国家重点基础研究发展计划(2010CB227102)资助
关键词 聚光集热系统 统一建模方法 蒙特卡罗光线追迹 光热转换过程 太阳热流分布 concentrating solar collectors, unified modelling method, Monte Carlo Ray-Trace, photo-thermal conversion process, solarflux distributions
  • 相关文献

参考文献22

  • 1Qu H, Zhao J, Yu X, et al. Prospect of concentrating solar power in China--The sustainable future. Renew Sust Energ Rev, 2008, 12: 2505-2514.
  • 2Liu L Q, Wang Z X, Zhang H Q, et al. Solar energy development in China--A review. Renew Sust Energ Rev, 2010, 14:301-311.
  • 3Kalogirou S A. Solar thermal collectors and applications. Prog Energy Combust Sci, 2004, 30:231-295.
  • 4Garcia P, Ferriere A, Benian J J. Codes for solar flux calculation dedicated to central receiver system applications: A comparative review. Sol Energy, 2008, 82:189-197.
  • 5Ho C K. Software tools for analysis of concentrated solar power technologies. Technical Report, SAND2008-8053, Sandia National La- boratories, USA, 2008. 1-35.
  • 6Yao Z H, Wang Z F, Lu Z W, et al. Modeling and simulation of the pioneer 1 MW solar thermal central receiver system in China. Renew Energy, 2009, 34:2437-2446.
  • 7Shuai Y, Xia X L, Tan H P. Radiation performance of dish solar concentrator/cavity receiver systems. Sol Energy, 2008, 82:13-21.
  • 8Jeter S M. Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation. Sol Energy, 1986, 37:335-345.
  • 9Dudley V, Kolb G, Sloan M, et al. SEGS LS2 solar collector--Test results. Technical Report, SANDIA94-1884, Sandia National Labora- tories, USA, 1994. 1-32.
  • 10Buck R, Abele M, Kunberger J, et al. Receiver for solar-hybrid gas turbine and combined cycle systems. In: Proceedings of 9th So- IarPACES International Symposium on Solar Thermal Concentrating Technologies, 1999 June 22-26, Font-Romeu, France. J Phys IV France 9. 1999. 537-544.

同被引文献24

引证文献4

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部