期刊文献+

Z3CN20—09M铸造奥氏体不锈钢的低周疲劳行为 被引量:4

Low cycle fatigue behaviors of Z3CN20—09M cast austenitic stainless steel
原文传递
导出
摘要 采用径向应变控制研究了Z3CN20—09M奥氏体不锈钢在室温和350℃高温下的低周疲劳行为.Z3CN20—09M不锈钢表现为先硬化后软化的循环特性,但硬化的程度取决于温度和应变幅.随着应变幅的增加,Z3CN20—09M钢的低周疲劳循环寿命逐渐减短,而相同循环次数下应力幅也随之提高.温度对Z3CN20—09M钢的低周疲劳行为影响较大,与室温相比高温下的循环硬化程度更高,相同应变幅下高温的低周疲劳寿命也高于常温下的寿命.通过疲劳实验的原位观察发现,奥氏体内的滑移面、夹杂物及奥氏体和铁素体两相的界面是疲劳裂纹可能的形核位置,奥氏体和铁素体两相的不协调变形使相界处产生应力集中,导致疲劳裂纹容易沿两相界面扩展. The low cycle fatigue (LCF) behaviors of Z3CN20-09M austenitic stainless steel were tested by the method of radial strain control at room temperature and 350 ℃. The steel presents cyclic hardening followed by cyclic softening, and the degree of cyclic hardening depends on temperature and strain amplitude. With the increase of strain amplitude, the LCF life of the steel decreases, but the stress amplitude for the same cycles increases. Temperature has great effect on the LCF behaviors of the steel, the degree of cyclic hardening at 350 ℃ is higher than that at room temperature, and the LCF life at 350 ℃ is also higher than that at room temperature for the same strain amplitude. Through in-situ observations in fatigue testing, slip planes within austenite, inclusions, and austenite/ferrite phase boundaries arc considered to be the possible nucleation sites of fatigue cracks. The incongruous deformation abilities of austenite and ferrite cause stress concentration in the phase boundaries and become the preferential propagating paths of fatigue cracks.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2012年第8期903-907,共5页 Journal of University of Science and Technology Beijing
基金 国家高技术研究发展计划资助项目(2012AA050901 2012AA03A507)
关键词 奥氏体不锈钢 材料疲劳 疲劳裂纹 疲劳试验 寿命 高温试验 austenitic stainless steel fatigue of materials fatigue cracks fatigue testing life cycle high temperature testing
  • 相关文献

参考文献10

  • 1Chung H M.Aging and life prediction of cast duplex stainless steelcomponents.Int J Pressure Vessels Piping,1992,50(1—3):179.
  • 2Kawaguchi S,Sakamoto N,Takano G,et al.Microstructuralchanges and fracture behavior of CF8M duplex stainless steels afterlong-term aging.Nucl Eng Des,1997,174(3):273.
  • 3Bae K H,Kim H H,Lee S B.A simple life prediction method for304 L stainless steel structures under fatigue-dominated thermo-me-chanical fatigue loadings.Mater Sci Eng A,2011,529:370.
  • 4Mu P,Aubin V.Microcrack initiation in low-cycle fatigue of anaustenitic stainless steel.Procedia Eng,2010,2(1):1951.
  • 5Balbi M,Avalos M,El Bartali A,et al.Microcrack growth andfatigue behavior of a duplex stainless steel.Int J Fatigue,2009,31(11/12):2006.
  • 6Marrow T J,King J E.Fatigue crack propagation mechanisms in athermally aged duplex stainless steel.Mater Sci Eng A,1994,183(1/2):91.
  • 7Kwon J D,Woo S W,Lee Y S,et al.Effects of thermal aging onthe low cycle fatigue behavior of austenitic-ferritic duplex caststainless steel.Nucl Eng Des,2001,206(1):35.
  • 8Calonne V,Gourgues A F,Pineau A.Fatigue crack propagationin cast duplex stainless steels:thermal ageing and microstructuraleffects.Fatigue Fract Eng Mater Struct,2004,27(1):31.
  • 9Yagawa G,Yoshimura S.A study on probabilistic fracture me-chanics for nuclear pressure vessels and piping.Int J Pressure Ves-sels Piping,1997,73(1):97.
  • 10Pareige C,Novy S,Saillet S,et al.Study of phase transforma-tion and mechanical properties evolution of duplex stainless steelsafter long term thermal ageing(>20 years).J Nucl Mater,2011,411(1—3):90.

同被引文献34

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部