期刊文献+

基于最优极化相干系数的倾斜建筑物解译研究 被引量:10

Interpretation of Oblique Buildings Based on Optimal Polarimetric Coherence Coefficient
下载PDF
导出
摘要 基于Freeman_Durden分解的全极化SAR影像分类方法能够较好地保持地物极化散射特性,但在分类的过程中,不能改变初始散射机制,导致分解结果对分类精度影响很大。在Freeman_Durden分解中,排列方向相对雷达飞行方向不平行的建筑物(简称为倾斜建筑物)常被分为体散射类型,使得该类建筑物往往被误分为植被。通过分析建筑物在SAR影像中的后向散射特性,利用建筑物具有较高相干性的特点,引入最优极化相干系数,在目标分解的基础上通过阈值分割将两者区分开来,进而提高反射非对称性人工目标的分类效果。通过使用E-SAR系统在德国DLR附近Oberp-faffenhofen地区获取的L波段PolInSAR影像和国内X-SAR系统在海南陵水地区获取的X波段PolInSAR影像进行试验,证明该方法能够有效地将与雷达飞行方向不平行的建筑物与森林区分开。 It could preserve polarimetric scattering characteristics for classification of polarimetric synthetic aperture radar image based on Freeman_Durden decomposition, but the classification accuracy is susceptible to target decomposition due to that the scattering mechanisms could not be changed in the process of classification. Buildings aligned not along with the flight direction of radar belong to volume scattering in Freeman_Durden decomposition. And it was difficult to distinguish oblique buildings from vegetation. According to the high coherence characteristic of building, optimal polarimetric coherence coefficient was introduced to the new algorithm by analyzing the backscattering characteristics of building, to improve the classification accuracy of tilted building and forest on the basis of target decomposition. The experiment results indicate the effectiveness of the algorithm by using the L-band PolInSAR images of Oberpfaffenhofen around DLR of E-SAR and X band PolInSAR images of Lingshui in Hainan province of domestic X-SAR.
出处 《测绘学报》 EI CSCD 北大核心 2012年第4期577-583,590,共8页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(60890074) 国家863计划(2011AA120404) 中央高校基本科研业务费专项资金(201161902020003)
关键词 极化干涉合成孔径雷达(PolInSAR) 最优极化相干系数项 倾斜建筑物 分类精度 polarimetric interferimetric synthetic aperture radar(PollnSAR) optimal polarimetric coherence coefficient obique building classification accuracy.
  • 相关文献

参考文献23

  • 1黄国满,张继贤,赵争,燕琴.机载干涉SAR测绘制图应用系统研究[J].测绘学报,2008,37(3):277-279. 被引量:27
  • 2胡风明,范学花,杨汝良,商建.利用方向性粗糙度特征对SAR图像目标检测的研究[J].测绘学报,2009,38(3):229-235. 被引量:4
  • 3LEE J S, POTTIER E. Polarimeric Radar Imaging: from Basics to Applications[M]. Boca Ration:Taylor & Francis, 2009.
  • 4CLOUDE S R. Polarisation~ Application in Remote Sensing [M]. Oxford : Oxford University Press, 2010.
  • 5杨磊,赵拥军,王志刚.基于功率和相位联合估计TLS-ESPRIT算法的极化干涉SAR数据分析[J].测绘学报,2007,36(2):163-168. 被引量:9
  • 6谈璐璐,杨立波,杨汝良.基于ESPRIT算法的极化干涉SAR植被高度反演研究[J].测绘学报,2011,40(3):296-300. 被引量:26
  • 7LEEJ S, GRUNES M R, AINSWORTH T L, et al. Unsupervised Classification Using Polarimetrie Decomposition and the Complex Wishart Classifier[J]. IEEE Transaction on Geoscience and Remote Sensing, 1999, 37 ( 5 ) 2249- 2257.
  • 8FREEMAN A, DURDEN S. A Three component Scatter ing Model for Polarimetric SAR Data[J]. IEEE Transac tions on Geoscience and Remote Sensing, 1998, 36 (3) 963-973.
  • 9LEE J S, GRUNES M R, POTIER E, et al. Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42, (4) : 722-731.
  • 10AN W, CUI Y, YANG J. Three component Model based Decomposition for Polarimetric SAR Data[ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6):2732-2739.

二级参考文献50

  • 1吴一戎,洪文,王彦平.极化干涉SAR的研究现状与启示[J].电子与信息学报,2007,29(5):1258-1262. 被引量:51
  • 2MORGAN C J, MOYER L R, W1LSON R S. Optimal Radar Threshold Determination in Weibull Clutter and Gaussian Noise[J]. IEEE Aerospace and Electronic Systems Magazine, 1996, 11(3) :41-43.
  • 3NOVAK L M, HALVERSEN S D, OWIRKA G J, et al. Effects of Polarization and Resolution on SAR ATR[J]. IEEE Trans on Aerospace and Electronic Systems, 1997, 33(1) :102-116.
  • 4RAVID R, LEVANON N. Maximum Likelihood CFAR for Weibull Background[J]. Radar and Signal Processing, IEE, 1992, 139(3):256-264.
  • 5KUTTIKKAD S, CHELLAPPA R. Non-Gaussian CFAR Techniques for Target Detection in High Resolution SAR Images[C]//Image Processing. Austin: [s. n.], 1994: 910- 914.
  • 6BERIZZI F, BERTINI G, MARTORELLA M, et al. Two dimensional Variation Algorithm for Fractal Analysis of Sea SAR Images[J]. IEEE Trans on Geoscience and Remote Sensing, 2006, 44(9): 2361 -2373.
  • 7CHAUDHURIAND B B, SARKAR N. Texture Segmenta tion Using Fractal Dimension[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(1) :72-77.
  • 8MARTINO G D, IODICE A, RICCIO D, et al. A Novel Approach for Disaster Monitoring: Fractal Models and Tools[J]. IEEE Trans on Geoscience and Remote Sensing, 2007, 45(6):1559-1570.
  • 9KAPLAN L M, ROMAIN M, KAMESWARA N. Extended Fractal Feature for First Stage SAR Target Detection [J]. SPIE, 1999, 3721:35- 46.
  • 10KAPLAN L M. Improved SAR Target Detection via Extended Fractal Features[J]. IEEE Trans on Aerospace and Electronic Systems, 2001, 37(2): 436-451.

共引文献57

同被引文献45

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部