期刊文献+

基于粗糙自适应神经模糊推理的导弹类型识别 被引量:2

Missile Type Recognition Based on Rough Adaptive Neural-fuzzy Inference Method
原文传递
导出
摘要 舰艇编队的反导作战能力直接关系着编队的生存能力,而导弹目标类型识别是反导作战的基础。针对舰艇编队反导作战对导弹类型识别的具体战术要求,建立了反舰导弹分类及特征模型,分析了编队反导作战目标类型综合识别流程。结合粗糙集理论与自适应神经模糊推理,设计了一种基于粗糙自适应神经模糊推理(RAN-FIS)的导弹类型识别方法,提高了识别效率。根据LMS(least-mean square)算法设计了RANFIS的参数估计方法,该参数估计方法根据实际输出信号与网络输出信号之间的误差调整参数取值,能够根据已有反舰导弹样本的特征属性以及类型确定参数。仿真结果显示,所设计的导弹类型识别方法能够很好的识别海战场上出现的反舰导弹的类型。 The anti-missile fight capability concerns the fleet vitality, and missile type recognition is the base of anti-missile fight. In view of the tactics require of the warship formation anti-missile fight missile type recognition, the classification and characteristic model of anti-ship missile were constructed, the flow of missile type recognition was analyzed. A recognition method based on rough adaptive neural-fuzzy in- ference system was designed, which improve the recognition efficiency. The missile type recognition process was analyzed, the parameter estimation method was designed based on LMS (least-mean square) algorithm, which can adjust parameter based on the error between actual output signal and the designed network output signal. Simulation show that the designed missile type recognition method can ascertain the type of missiles which appear on the sea battlefield.
出处 《战术导弹技术》 2012年第4期30-34,共5页 Tactical Missile Technology
关键词 舰艇编队 反导作战 导弹类型识别 粗糙自适应神经模糊推理系统 warship formation anti-missile fight missile type recognition rough adaptive neuralfuzzy inference system (RANFIS)
  • 相关文献

参考文献5

  • 1雷阳,雷英杰,华继学,孔韦韦,蔡茹.基于自适应直觉模糊推理的目标识别方法[J].系统工程与电子技术,2010,32(7):1471-1475. 被引量:11
  • 2Jang J S R.ANFIS: Adaptive-network-based fuzzy inference systems[].IEEE Transactions on Systems Man and Cybernetics.1993
  • 3Hitoshi Iyatomi and Masafumi Hagiwara.Scenery image recognition and interpretation using fuzzy inference neural networks[].Pattern Recognition.2002
  • 4Chandana Mayorga.RANFIS:rough adaptive neuro-fuzzyinference system[].J World Academy of Science Engi-neering and Technology.2007
  • 5Hitoshi Iyatomi,Masafumi Hagiwara.Adaptive fuzzy in-ference neural network[].Pattern Recognition.2004

二级参考文献13

共引文献10

同被引文献30

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部