期刊文献+

基于ANSYS的结构拓扑优化 被引量:26

Topological optimization of continuum structure based on ANSYS
下载PDF
导出
摘要 针对拓扑优化技术在现实中的应用问题,将拓扑优化技术应用到自行车车架和多拱拱桥的最优化设计中。开展了各种拓扑优化方法的分析研究,建立了"以单元材料密度为设计变量,以结构的柔顺度最小化为目标函数,体积减少百分比为约束函数"的数学模型;通过采用商用有限元软件ANSYS中的拓扑优化设计模块对自行车车架和多拱拱桥进行了拓扑优化设计,优化结果表明所得拓扑结构清晰,并与实际的自行车车架和多拱拱桥非常相似。研究结果表明,该结构拓扑优化方法正确而有效,具有一定的工程应用前景。 In order to solve the application problems of topological optimization technology in reality, the bicycle frames and muhiple arch bridge was investigated.After the analysis of all kinds of methods of topological optimizaiton, the mathematical model that unit material density as design variables, the minimum of structural compliance as the objective function, the volume reduction percentage as the constraint function was established. The topology optimization design module of the commercial finite element software ANSYS was used to the bicycle frame and multiple arch bridge for the topology optimization design.The topological structure is clear and they are very likely to the bicycle frame and multiple arch bridge in reality. The results indicate that the method is correct and effective, it has a certain engineering application prospect.
作者 林丹益 李芳
出处 《机电工程》 CAS 2012年第8期898-901,915,共5页 Journal of Mechanical & Electrical Engineering
关键词 拓扑优化 ANSYS 自行车车架 多拱拱桥 topological optimization ANSYS bicycle frame multiple arch bridge
  • 相关文献

参考文献15

  • 1李芳,凌道盛.工程结构优化设计发展综述[J].工程设计学报,2002,9(5):229-235. 被引量:122
  • 2MANA D, KUMAR N D, SOMASEKHAR B. Topology-opti- mized thermoplastic beams for automobile crashworthiness IN]. SAE Technical Paper,2011-26-0055.
  • 3RIORDAN C, TOVAR A, RENAUD J. Topology optimiza- tion of a formula SAE upright using optistruct [N]. SAE Technical Paper, 2010-01-0396.
  • 4HONGWEI Z, XIAOKAI C, Yl L. Topology optimization of hybrid electric vehicle frame using multi-loading cases opti- mization[N]. SAE Technical Paper,2008-01-1734.
  • 5CALVO A P,VELAZQUEZ V F,ZEPEDA S A,et al. Topo- logical design approach for an electrical car chassis IN]. SAE Technical Paper,2011-01-0069.
  • 6BENDSOE M P, KIKUCttI N. Generating optimal topolo- gies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and En- gineering, 1988,71 (2) : 197-224.
  • 7PARIS J, NAVARRINA F, COLOMINAS I, et al. Topology optimization of continuum structures with local and global stress constraints [J]. Structural and Multidisciplinary Optimization, 2009,39 (4) : 419-437.
  • 8SUI Y K, YE H L, PENG X R. Topological optimization of continuum structure with global stress constraints based on ICM method[J]. Computational Methods,2006(PTS1-2) : 1003-1014.
  • 9LIN Jiang-zi, LUO Zhen, TONG Li-yong. A new multi-ob- jective programming scheme for topology optimization of compliant mechanisms [J]. Structural and Multidisci- plinary Optimization, 2010,40 (1-6) : 241-255.
  • 10XIE Y M, STEVEN G P. Evolutionary Structural Optimiza- tion[M]. Berlin:Springer Verlag, 1997.

二级参考文献18

共引文献135

同被引文献184

引证文献26

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部