期刊文献+

YF_3包覆Li(Li_(0.22)Ni_(0.17)Mn_(0.61))O_2正极材料的性能

Electrochemical Performance of YF_3-Coated Li(Li_(0.22)Ni_(0.17)Mn_(0.61))O_2 Cathode Material for Li-Ion Batteries
下载PDF
导出
摘要 富锂层状氧化物作为锂离子电池正极材料具有高比容量优势.采用草酸盐共沉淀法制备Li(Li0.22Ni0.17Mn0.61)O2,并用YF3包覆电极.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线能谱分析(EDS)表征材料结构、观察材料形貌.结果表明,材料颗粒尺寸在100~200 nm范围,YF3包覆不会改变材料结构和形貌.电化学恒流充放电测试表明,YF3包覆Li(Li0.22Ni0.17Mn0.61)O2电极的比容量,尤其倍率比容量明显提高.60 mA·g-1电流密度下包覆电极材料30周循环后其比容量保持在220 mAh·g-1以上,1500 mA·g-1电流密度下其比容量仍可达150 mAh·g-1.电化学阻抗谱(EIS)测试结果表明,YF3包覆电极电荷转移电阻和扩散阻抗均明显降低,有利于电化学性能改善. The Li(Li0 22 Ni0.17 Mn0. 61 )O2 was prepared with oxalic co-precipitation and coated with an YF3 layer by a chemical deposition method. The as-prepared and YF3-coated Li-rich materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results demonstrate that the as-prepared and YF3-coated Li( Li0.22Ni0 17Mn0.61 )O2 materials have a typical layered structure and are composed of sphere-like particles with a diameter of 100-200 nm. Gal-vanostatic charge-discharge tests show that the discharge capacity of the YF3-coated Li ( Lio. 22 Nio. 17 Mno 6l ) 02 is obviously improved. At the low current density of 60 mAh·g^-1, the discharge capacity reaches 240 mAh·g^-1, and remains 220 mAh·g^-1 after 30 cycles. At the high current density of 1500 mAh·g^-1, the discharge capaci-ty still keeps 150 mAh·g^-1, showing an excellent high-rate capability. Electrochemical impedance spectra (EIS) reveal that the YF3-coated Li (Li0.22 Ni0. 17 Mn0.6l )O2 shows lower charge-transfer resistance and diffu-sion impedance as compared with the as-prepared Li( Li0.22Ni0.17Mn0. 61 )O2.
出处 《电化学》 CAS CSCD 北大核心 2012年第4期322-327,共6页 Journal of Electrochemistry
基金 国家973计划项目(No.2009CB220100)资助
关键词 锂离子电池 正极材料 富锂层状氧化物 YF3包覆 高倍率性能 Li-ion batteries cathode material Li-rich layered oxides YF3-coating high-rate capability
  • 相关文献

参考文献18

  • 1Lu Z H, MacNeil D D, Dahn J R. Layered cathode materials Li[NixLi(1/3–2x/3)Mn(2/3–x/3)]O2 for lithium-ion batteries [J]. Electrochemical and Solid-State Letters, 2001, 4(11): A191-A194.
  • 2Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J]. Journal of the American Chemical Society, 2006(26), 128: 8694-8698.
  • 3Johnson C S, Li N C, Lefief C, et al. Synthesis characterization and electrochemistry of lithium battery electrodes: xLi2MnO3(1-x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7) [J]. Chemistry of Materials, 2008, 20(19): 6095-6106.
  • 4吴承仁,赵长春,王兆翔,陈立泉.锂离子电池用富锂层状正极材料[J].化学进展,2011,23(10):2038-2044. 被引量:17
  • 5Myung S T, Izumi K, Komaba S, et al. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries [J]. Chemistry of Materials, 2005, 17(14): 3695-3704.
  • 6Zheng J M, Zhang Z R, Wu X B, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery [J]. Journal of The Electrochemical Society, 2008, 155(10): A775-A782.
  • 7Zhao Y J, Zhao C S, Feng H L, et al. Enhanced electrochemical performance of Li[Li0.2Ni0.2Mn0.6]O2 modified by manganese oxide coating for lithium-ion batteries [J]. Electrochemical and Solid-State Letters, 2011, 14(1): A1-A5.
  • 8Li J G, Wang L, Zhang Q, et al. Electrochemical performance of SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries [J]. Journal of Power Sources, 2009, 190(1): 149-153.
  • 9CAO Jina CAO Gaoshao YU Hongming XIE Jian ZHAO Xinbing.Synthesis and electrochemical performance of YF_3-coated LiMn_2O_4 cathode materials for Li-ion batteries[J].Rare Metals,2011,30(1):39-43. 被引量:7
  • 10Wei G Z, Lu X, Ke F S, et al. Crystal habit-tuned nanoplate material of Li[Li1/3–2x/3NixMn2/3–x/3]O2 for high-rate performance lithium-ion batteries [J]. Advanced Materials, 2010, 22(39): 4364-4367.

二级参考文献79

  • 1Megahed S.and Scrosati B.,Lithium-ion rechargeable batteries,J.Power Sources,1994,51:79.
  • 2Amatucci G.G.,Pereira N.,Zheng T.,Plitz I.,and Tarascon J.M.,Enhancement of the electrochemical properties of Li1Mn2O4 through chemical substitution,J.Power Sources,1999,81-82:39.
  • 3Tarascon J.M.and Armand M.,Issues and challenges facing rechargeable lithium batteries,Nature,2001,414:359.
  • 4Taniguchi I.,Power properties of partially substituted LiMxM2-xO4 (M = Al,Cr,Fe,and Co) synzhesized by ultrasonic spray pyrolysis,Mater.Chem.Phys.,2005,92:172.
  • 5Amatucci G.G.,Schmutz C.N.,Blyr A.,Sigala C.,Gozdz A.S.,Larcher D.,and Tarascon J.M.,Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries,J.Power Sources,1997,69:11.
  • 6Yamada A.,Tanaka M.,Tanaka K,and Sekai K.,Jahn-Teller instability in spinel Li-Mn-O,J.Power Sources,1999,82:73.
  • 7Xia Y.and Yoshio M.,Studies on the Li-Mn-O spinel system (obtained from melt-impregnation method) as positive electrodes for 4 V lithium batteries.Part Ⅲ.Characterization of capacity and rechargeability,J.Power Sources,1996,63:97.
  • 8Sun Y.K.,Kim D.W.,and Choi Y.M.,Synthesis and characterization of spinel LiMn2-xNixO4 for lithium/polymer battery applications,J.Power Sources,1999,79:231.
  • 9Yi T.F.,Hu X.G.,and Gao K.,Synthesis and physicochemical properties of LiAl0.05Mn1.95O4 cathode material by the ultrasonic-assisted sol-gel method,J.Power Sources,2006,162:636.
  • 10Song G.M.,Li W.J.,and Zhou Y.,Synthesis of Mg-doped LiMn2O4 powders for lithium-ion batteries by rotary heating.Mater.Chem.Phys.,2004,87:162.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部