期刊文献+

聚吡咯/氧化石墨烯层状复合材料的制备及其在超级电容器中的应用(英文) 被引量:6

Electrochemical Performances of Layered Polypyrrole/Chemically Reduced Graphene Oxide Nanocomposites as Supercapacitor Electrodes
下载PDF
导出
摘要 通过将吡咯单体在低温下与氧化石墨烯进行原位聚合,获得聚吡咯/石墨烯(Ppy/CRGO)复合材料.采用场发射电子显微镜(FESEM)、红外(FT-IR)和热重分析(TGA)对复合物的表面形貌、结构进行表征.FESEM结果表明,通过控制氧化石墨烯(GO)和吡咯单体的质量比例,可以对复合物的层状和厚度进行调控.FT-IR和TGA结果表明,聚吡咯(Ppy)是通过化学键合的方式与氧化石墨烯复合在一起.通过机械冷压法将粉末状Ppy/CRGO复合物压成圆片电极,并探讨了石墨烯和聚吡咯复合比例、反应时间、烘干温度和孔隙率等因素对Ppy/CRGO复合物电极的电学和电化学性能的影响.结果表明,Ppy与CRGO质量比为10∶1所制得的Ppy/CRGO复合物的电容量为421 F·g-1,通过在电极中引入孔隙,电容量能进一步提升为509 F·g-1. Nanocomposites of polypyrrole (Ppy) and chemically reduced graphene oxide ( CRGO), Ppy/ CRGO, have been fabricated through in-situ polymerization of pyrrole on graphene oxide (GO) sheets. The as-synthesized Ppy/CRGO composites were characterized complementarily using scanning electron microscopy (SEM), tbermogravimetric analysis (TGA) and Fourier transformed infrared spectroscopy (FT-IR). By control- ling the initial ratio of the GO to pyrrole, the layered composites could be obtained and their thickness could be tuned properly. The Ppy/CRGO electrodes were prepared using a mechanical compressing technique and their elec- trical conductivity and electrochemical properties were characterized systematically. We demonstrated that as elec-trodes for supercapacitor, the Ppy/CRGO composites with Ppy to CRGO mass ratio of 10:1 showed a competitive capacitance of 421F· g^ -1 that could be further increased to 509 F· g^ -1 by introducing pores in it, which is higher than that of Ppy alone. Given the manifest electrical and electrochemical properties, we envisage that the Ppy/ CRGO composites should find applications in supereapacitors.
出处 《电化学》 CAS CSCD 北大核心 2012年第4期348-358,共11页 Journal of Electrochemistry
基金 supported by the National Natural Science Foundation of China(No.20906055) National"973 Program"(No.2010CB933900) the State Key Laboratory of Bioreactor Engineering(No.2060204)
关键词 氧化石墨烯 化学还原石墨烯 聚吡咯 复合物 超级电容器 graphene oxide chemically reduced graphene oxide polypyrrole composite supercapacitor
  • 相关文献

参考文献36

  • 1Jeong Y U, Manthiram A. Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes [J]. Journal of the Electrochemical Society, 2002, 149(11): A1419-A1422.
  • 2Devine-Wright P. Beyond NIMBYism: towards an integrated framework for understanding public perceptions of wind energy [J]. Wind Energy, 2005, 8(2): 125-139.
  • 3Manwell J F, McGowan J G, Rogers A L. Wind energy explained: theory, design and application [M]. Amherst: John Wiley and Sons, 2002: 11-22.
  • 4Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007, 317(5835): 222-225.
  • 5O'regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353(6346): 737-740.
  • 6Zhang D, Zhang X, Chen Y, et al. Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors [J]. Journal of Power Sources, 2011, 196(14): 5990-5996.
  • 7Conway B E. Electrochemical supercapacitors: scientific fundamentals and technological applications [M]. New York: Springer, 1999: 444-445.
  • 8Fuertes, A B, Lota G, Centeno T A, et al. Templated mesoporous carbons for supercapacitor application [J]. Electrochimica Acta, 2005, 50(14): 2799-2805.
  • 9Conway B E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage [J]. Journal of the Electrochemical Society, 1991, 138(6): 1539-1540.
  • 10Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors [J]. Nano letters, 2008, 8(10): 3498-3502.

同被引文献24

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部