期刊文献+

保持多样性的自适应动态粒子群算法及其应用 被引量:2

Adaptive Dynamic Particle Swarm Algorithm with Diversity Preservation and Its Application
下载PDF
导出
摘要 针对动态环境中的种群多样性问题,提出一种保持种群多样性的双子群粒子群优化算法。将群搜索算法中的游走者思想引入到粒子群优化算法中,基于群体多样性,子种群B采用不同的方法更新速度和位置,子种群A和子种群B交换最优信息,扩展种群的搜索范围,增强整个群体的多样性水平。将改进的算法应用于复杂变化的抛物线函数和群体动画的跟随效果中,结果表明该算法在动态环境中的有效性,并能够真实模拟群体跟随行为。 A double population particle swarm optimization with adaptive diversity preservation is proposed considering the population diversity in dynamic environment. The ranger idea of group search is introduced to particle swarm optimization, where subswarm B updates its speeds and positions with different methods according to the diversity of particle swarm and subswarm A and B exchange their optima. These mechanisms extend the search range and improve the swarm diversity. The scheme is tested on benchmark functions with dynamic complex changes and the simulation results show the proposed algorithm is effective in dynamic environments. It is also used to simulate group following behavior.
出处 《计算机工程》 CAS CSCD 2012年第16期167-169,173,共4页 Computer Engineering
基金 山东省高等学校科技计划基金资助项目(J10LG08) 山东省优秀中青年科学家科研奖励基金资助项目(BS2010DX033)
关键词 动态粒子群优化 多样性 双种群 群搜索 群体动画 dynamic particle swarm optimization diversity double population group search group animation
  • 相关文献

参考文献7

  • 1Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer[C]// Proc. of the IEEE International Conference on Evolutionary Computation. Piscataway, USA: IEEE Press, 1998: 69-73.
  • 2Eberhart R C, Shi Y. Tracking and Optimizing Dynamic Systems with Particle Swarms[C]//Proc, of Congress on Evolutionary Computation. Piscataway, USA: IEEE Press, 2001: 94-97.
  • 3Carlisle A, Dozier G. Adapting Particle Swarm Optimization to Dynamic Environments[C]//Proc. of International Conference on Artificial Intelligence. Las Vegas, USA: [s. n.], 2000: 429-434.
  • 4高平安,蔡自兴,余伶俐.一种基于多子群的动态优化算法[J].中南大学学报(自然科学版),2009,40(3):731-736. 被引量:6
  • 5焦巍,刘光斌.动态环境下的双子群PSO算法[J].控制与决策,2009,24(7):1083-1086. 被引量:10
  • 6He S, Wu Q H, Saunders J R. Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior[J]. IEEE Trans. on Evolutionary Computation, 2009, 13(5): 973-990.
  • 7聂晶,刘弘,王琪.基于粒子群算法的群体动画研究与实现[J].计算机工程,2009,35(4):210-211. 被引量:9

二级参考文献30

  • 1窦全胜,周春光,徐中宇,潘冠宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2006,43(1):89-95. 被引量:20
  • 2单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 3Reynolds C. Flocks, Herds, and Schools: A Distributed Behavioral Model[C]//Proceedings of SIGGRAPH'87. [S. l.]: IEEE Press, 1987: 25-34.
  • 4Tu Xing. Artificial Animals for Computer Animation: Biomechanics, Locomotion, Perception, and Behavior[M]. [S. l.]: Springer-Verlag, 1999.
  • 5Kennedy J, Eberhart R. Particle Swarm Optimization[C]//Proc. of IEEE Int'l Conf. on Neutral Networks. Perth, Australia: [s. n.], 1995: 1942-1948.
  • 6Kennedy J. Small Words and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance[C]//Proceedings of the 1999 Conference on Evolutionary Computation, Australia.[S. l.]: IEEE Press, 1999: 1931-1938.
  • 7Eberhart R C, SHI Yu-hui. Tracking and optimizing dynamic systems with particle swarms[C]//Proceedings of Congress on Evolutionary and Computation, Piscataway. New York: IEEE,2001: 94-100.
  • 8J1N Yao-chu, Branke J. Evolutionary optimization in uncertain environments: A survey[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(3): 303-317.
  • 9Carlisle A, Dozier Q Tracking changing extrema with adaptive particle swarm optimizer[C]//Proceedings of the World Automation Congress. Orlando, 2002: 265-270.
  • 10HU Xiao-hui, Eberhart R C. Adaptive particle swarm optimization: detection and response to dynamic systems[C]// Proceedings of the IEEE Congress on Evolutionary Computation. Honolulu, 2002: 1666-1670.

共引文献22

同被引文献18

  • 1王芳,雷开友,邱玉辉.一种粒子群算法的多样性策略研究[J].计算机科学,2006,33(1):213-215. 被引量:2
  • 2孟红记,郑鹏,武荣阳,谢植.基于改进PSO算法的连铸二冷过程优化仿真[J].系统仿真学报,2006,18(4):866-869. 被引量:6
  • 3刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 4高尚,汤可宗,蒋新姿,杨静宇.粒子群优化算法收敛性分析[J].科学技术与工程,2006,6(12):1625-1627. 被引量:19
  • 5Visakan Kadirkamanathan,Kirusnapillai Selvarajah,Peter J Fleming.Stability Analysis of the Particle Dynamics in Particle Swarm Optimizaer[J].IEEE Trans On Evolutionary Computation,2006,10 (3):245-255.
  • 6林川,冯全源.标准粒子群优化算法收敛性能分析与参数选择[C].2007控制科学与工程全国博士生学术论坛,2007:771-777.
  • 7Kran Mu S, Gi3ndtiz M. A recombination--based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems [J]. Applied Soft Computing. 2013, 13 (4): 2188-2203.
  • 8Elsayed S M, Sarker R A, Sarker E. Self--adaptive mix of particle swarm methodologies for constrained optimization [J]. Information Sciences. 2014, 27 (1): 216-233.
  • 9Suresh K, Kumarappan N. Hybrid improved binary particle swarm optimization approach for generation maintenance scheduling prob- lem [J]. Swarm and Evolutionary Computation, 2013, 4 (9) : 69 -89.
  • 10Zhang Z B, Jiang Y Z, Zhang S H. An adaptive particle swarm opti- mization algorithm for reservoir operation optimization [J]. Applied Soft Computing, 2014, 5 (18) : 16-27.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部