期刊文献+

基于小波包分解的水面目标吨位大小分类方法

Surface Target Tonnage Size Classification Method Based On Wavelet Packet Decomposition
下载PDF
导出
摘要 基于不同吨位大小的水面船舶辐射噪声特点,提出了一种利用小波包分解提取各频率段能量作为分类特征,利用支持向量机算法进行分类的方法。比较了基于三种不同核函数的支持向量机性能。仿真结果表明,利用小波包分解和支持向量机能对水面目标吨位大小进行有效估计。 Based on surface target radiated noise characteristics of different tonnage size,a method of extracting the frequency band energy as the classification features using wavelet packet decomposition and using the algorithm of support vector machine classification is presented.The performance of support vector machine based on three different kernel functions are compared.The simulation results show that,the method using wavelet packet decomposition and support vector machine can estimate the tonnage size of surface target effectively.
出处 《中国科技信息》 2012年第16期47-47,51,共2页 China Science and Technology Information
关键词 小波包分解 支持向量机 水面目标 吨位大小分类 wavelet packet decomposition; support vector machine; water surface target; tonnage size classification
  • 相关文献

参考文献4

  • 1刘健.基于小波变换和支持向量机的水下目标分类方法[J].火力指挥控制,2011,36(9).
  • 2[美]Pang-Ning Tan,Michael Steinbach,Vipin Kumar著,范明等译,数据挖掘导论:完整版[M].北京:人民邮电出版社,2011.1.
  • 3张南,刘军杰,刘志军.基于支持向量机的模式识别方法研究[J].舰船科学技术,2006,28(5):93-98. 被引量:6
  • 4吴正国.现代信号处理技术:高阶谱、时频分析与小波变换[M].武汉:武汉大学出版社,2003,1.

二级参考文献30

  • 1VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2GUO Guo-dong, et al. Learning similarity measure for natural image retrieval with relevance feedback [ J ],IEEE Trans, Neural Networks, 2002, 13 (4) : 811 -820.
  • 3TIAN Q, HONG P, HUANG T S. Update relevant image weights for content-based image retrieval using support vector machines [ C]. IEEE Proc. Multimedia and Expo,2000,2 : 1199 - 1202.
  • 4HONG Peng-yu, Incorporate support vector machines to content-based image retrieval with relevance feedback [ C ].IEEE Proc. Image Processing, 2000, 3: 7.50- 753,
  • 5CHANG E, et al. CBSA: content-based soft annotation for muhimodal image retrieval using Bayes point machines[J]. IEEE Trans. Circuits and Systems for Video Technology, 2003,13(1) : 26 -38.
  • 6KIM J J. HWANG B W, LEE S W. Retrieval of the top N matches with support vector machines [ C ]. IEEE Proc. Pattern Recognition, 2000,2 : 716 - 719.
  • 7HERMES L, BUHMANN J M. Feature selection for support vector machines [C]. 15th Int. Conf. on Pattern Recognition, 2000,2:712 - 715.
  • 8GUPTA P, et al. Beam search for feature selection in automatic SVM defect classification [ C]. IEEE Proc. Pattern Recognition, 2002,2 : 212 - 215.
  • 9ROOBAERT D. DirectSVM: a fast and simple support vector machine perceptron [ C]. IEEE Proc. Neural Networks for Signal Processing X, 2000,1 : 356 - 365.
  • 10VISHWANATHAN, et al. Geometric SVM:a fast and intuitive SVM algorithm [ C]. IEEE Proc. Pattern Recognition, 2002,2:56-59.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部