摘要
将重心有理插值与Newton型多项式插值结合起来,利用偏差商的递推算法,得到了满足矩形网格上所给插值条件的二元有理插值函数,给出了插值的特征性质和对偶形式.该二元有理插值函数它继承了重心有理插值的计算量小、没有极点、数值稳定性好和多项式插值的线性性质等优点.最后通过数值例子验证了所给方法的有效性.
By means of recursive algorithm of the partial divided differences,a bivariate rational interpolating function which interpolates the given support points over rectangular has been constructed based on Barycentric rational interpolation and Newton-type interpolation polynomial,its characteristic properties and duality schemes are deduced.The new rational interpolation inherited the small calculation quantity,no poles,good numerical stability of barycentric rational interpolations and the favorite linear interpolation of Newton polynomial.At last,numerical examples are given to show the effectiveness of the constructed method.
出处
《西安工程大学学报》
CAS
2012年第3期387-391,共5页
Journal of Xi’an Polytechnic University
关键词
重心有理插值
偏差商
多项式插值
特征性质
barycentric rational interpolant
partial difference
polynomial interpolant
characteristic properties