期刊文献+

矩形网格上Barycentric-Newton型混合有理插值 被引量:2

Barycentric-Newton type blending rational interpolants over rectangular grids
下载PDF
导出
摘要 将重心有理插值与Newton型多项式插值结合起来,利用偏差商的递推算法,得到了满足矩形网格上所给插值条件的二元有理插值函数,给出了插值的特征性质和对偶形式.该二元有理插值函数它继承了重心有理插值的计算量小、没有极点、数值稳定性好和多项式插值的线性性质等优点.最后通过数值例子验证了所给方法的有效性. By means of recursive algorithm of the partial divided differences,a bivariate rational interpolating function which interpolates the given support points over rectangular has been constructed based on Barycentric rational interpolation and Newton-type interpolation polynomial,its characteristic properties and duality schemes are deduced.The new rational interpolation inherited the small calculation quantity,no poles,good numerical stability of barycentric rational interpolations and the favorite linear interpolation of Newton polynomial.At last,numerical examples are given to show the effectiveness of the constructed method.
出处 《西安工程大学学报》 CAS 2012年第3期387-391,共5页 Journal of Xi’an Polytechnic University
关键词 重心有理插值 偏差商 多项式插值 特征性质 barycentric rational interpolant partial difference polynomial interpolant characteristic properties
  • 相关文献

参考文献3

二级参考文献12

  • 1Qian-jin Zhao,Jie-qing Tan.BLOCK BASED NEWTON-LIKE BLENDING INTERPOLATION[J].Journal of Computational Mathematics,2006,24(4):515-526. 被引量:18
  • 2Zhao Q J,Tan J Q.Block based Thiele-like blending rationalinterpolation. Computational of Appllied Mathematics . 2006
  • 3Tan J Q,Tang S.Composite schemes for multivariate blendingrational interpolation. Journal of Computational of Appliedmathematics . 2002
  • 4Siemaszko W.Thiele-type branched continued fractions for two-variable functions. Journal of computational and Applied mathematics . 1983
  • 5TAN JIEQING,FANG YI.Newton-Thiele s rational interpolants. Numerical Algorithms . 2000
  • 6Berrut J P,Trefethen L N.Barycentric Lagrange interpolation. SI-AM Review . 2004
  • 7J-P Berrut,HD Mittelmann.Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval. Computers and Mathematics With Applications . 1997
  • 8Tan J Q,Song B R,Zhu G Q.Vector valued rationalinterpolants over triangular grids. Computers andMathematics with Applications . 2002
  • 9Floater M S,Hormann K.Barycentric rational interpolation withno poles and high rates of approximation. Numerische Math-ematik . 2007
  • 10Schneider C,Werne W.Some new aspects of rational interpolation. Mathematics of Computation . 1986

共引文献32

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部