期刊文献+

支持向量机在航空兵部队油料消耗量预测中的应用 被引量:2

Application of support vector machine in oil consumption prediction model for aviation troops
原文传递
导出
摘要 分析了支持向量机的基本原理及算法,确定了航空兵部队油料消耗量预测模型的样本输入量,构造了航空兵部队作战油料消耗量预测函数,采用LibSVM-Matlab工具箱对模型进行编程求解,选用3个指标对预测结果进行评价。并以某空军航空兵部队油料消耗量为例,运用基于SVM的航空兵部队油料消耗量预测模型,对2009年演习的油料消耗量进行了预测,预测结果与实际值进行比较,预测精度高,为科学预测战场油料消耗量提供了科学定量的分析方法。 This paper analyzes the basic principle of support vector machine,determines the sample inputs for oil consumption prediction model of aviation troops.The prediction function for aviation troops oil consumption is constructed,LibSVM-Matlab toolbox is used to solve the model,and three indexes are selected to evaluated the prediction results.The oil consumption of one aviation troop is taken as an example.This aviation troops oil consumption prediction model is used to forecast the oil consumption in 2009 based on SVM,and the prediction results are compared with the actual value.It shows the high prediction accuracy,which provides scientific quantitative analytical method for prediction battlefield oil consumption.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第6期38-42,共5页 Journal of Chongqing University
基金 国家863计划资助项目(2009AA04z411)
关键词 支持向量机 航空兵部队 油料消耗量 预测消耗 预测模型 support vector machine aviation troops oil consumption prediction consumption prediction model
分类号 E917 [军事]
  • 相关文献

参考文献4

二级参考文献25

  • 1丁国勤,孟卫东,任凯.基于博弈论的军队油料社会化保障模型的建立和分析[J].军事运筹与系统工程,2004,18(3):62-67. 被引量:5
  • 2Naurf Mecardle KF. Coherent Behavior in Noncooperative games [J].Journal of Economic Theory, 1990,50:410-445.
  • 3Thomas L Landers,Michal H Cole,Bryan Walker,Randall W Kirk. The virtual warehousing concept [J].Transportation Research Part E, 2000,36:115-125.
  • 4Vapnik VN. The Nature of Statistical Learning Theory[M]. Springer, New York, 1995.
  • 5Lin CJ. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks[J]. 2001,12(6):1288-1298.
  • 6Liao SP, Lin HT,Lin CJ. A Note on the Decomposition Methods for Support Vector Regression[J]. Neural Computation, 2002( 14):1267-1281.
  • 7Walczak B.Massart DL. The radial basis function-partial least squares approach as a flexible non-linear regression technique[J]. Analytica Chimica Acta, 1996,331:177-185.
  • 8Zhu Jia-yuan,Zhang Heng-xi,Guo Ji-lian.Data distributions automatic identification based on SOM and support vector machines[C]// Proceedings of the First lnternational Conference of Machine Learning and Cybernetics,ICMLLC2002.Beijing:IEEE,2002:340-344.
  • 9Suykens J A K,Vandewalle J.Least squares support vector machines classifiers[J].Neural Processing Letters,1999,9(3):293-298.
  • 10Suykens J A K,Lukas L,Van Dooren P,et al.Least squares support vector machine classlfiers:a larger scale algorithm[C]//Proc.of the Europeam Conference on Circuit Theory and Design.Italy:Stresa,1999:839-842.

共引文献6

同被引文献27

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部