期刊文献+

能耗实时监测的数据挖掘方法 被引量:16

A real-time monitoring method of energy consumption based on data mining
原文传递
导出
摘要 针对能耗监测常用的设定能耗阈值方法和基于历史数据的数据分析方法在实时性和智能性方面的不足,提出了一种基于数据挖掘技术的能耗实时监测方法。该方法通过对历史能耗数据进行聚类分析识别耗能体特有的能耗模式集合,对数据分类后获得能耗模式判定树,在能耗实时监测过程中对动态采集的能耗数据进行模式匹配,与相同模式历史数据进行离群点分析,可判别当前能耗是否异常。结合某综合大楼能耗数据进行了实验,验证了该方法及时发现能耗数据异常的有效性。 A real-time monitoring method of energy consumption based on data mining techniques is proposed to compensate the deficiency of common energy consumption methods in real time and intelligence.The new method can identify energy consumption patterns by clustering analysis of historical energy consumption data,get the decision tree of energy consumption pattern by classifying the energy consumption data,match the real-time energy consumption data with the energy consumption patterns,make outlier analysis with historical data of the same pattern,and then determine whether the current energy consumption is abnormal.The experiment with energy consumption data from the comprehensive building proves that the new method is effective in detecting the abnormal data of energy consumption real-timely.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期133-137,共5页 Journal of Chongqing University
基金 国家科技重大专项资助项目(2009ZX07315-005) 重庆大学研究生创新基金个人项目资助项目(CDJXS11180016)
关键词 能耗 能源管理 数据挖掘 实时 监测 energy consumption energy management data mining real-time monitoring
  • 相关文献

参考文献18

  • 1李百战,张宇,丁勇,谭颖.重庆市公共建筑能源管理现状分析[J].暖通空调,2010,40(9):112-117. 被引量:12
  • 2李峥嵘,李浩翥,郁盛,诸英霞.建筑能效当量能耗方法研究[J].同济大学学报(自然科学版),2010,38(3):353-357. 被引量:6
  • 3Lee W S, Lee K P. Benchmarking the performance of building energy management using data envelopment analysis [ J ]. Applied Thermal Engineering, 2009, 29(16) : 3269-3273.
  • 4Seem J E. Using intelligent data analysis to detect abnormal energy consumption in buildingsEJ. Energy and Buildings, 2007, 39(1): 52-58.
  • 5Li X L, Bowers C P, Schnier T. Classification of energy consumption in buildings with outlier detectionD]. IEEE Transactions on Industrial Electronics, 2010, 57(11): 3639-3644.
  • 6杨凌波,曾思育,鞠宇平,何苗,陈吉宁.我国城市污水处理厂能耗规律的统计分析与定量识别[J].给水排水,2008,34(10):42-45. 被引量:130
  • 7Seem J E. Pattern recognition algorithm for determining days of the week with similar energyconsumption profiles[J]. Energy and Buildings, 2005, 37(2) : 127-139.
  • 8HanJW,KamberM.数据挖掘概念与技术[M].范明,孟小峰,译.2版.北京:机械工业出版社,2007.
  • 9贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:226
  • 10Wu Y, Yang K, Zhang J Z. Using DBSCAN clustering algorithm in spam identifying [C]//ICETC 2010, 2nd International Conference on Education Technology and Computer, June 22 24, 2010, Shanghai, China. United States: IEEE Computer Society, 2010: 1398 -1402.

二级参考文献127

共引文献451

同被引文献161

引证文献16

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部