期刊文献+

人体运动传感数据的无线采集方案设计 被引量:1

Design of wireless network on human motion capture
下载PDF
导出
摘要 提出运用无线传感网络的方法实现人体运动传感数据的采集.该系统包含传感节点、簇首节点和汇聚节点.采用分层分簇的组网形式,传感节点通过无线的形式自适应地连接到某个簇首节点.每个簇首节点采用分时的形式组织各自的传感节点,并进行数据融合,转发到汇聚节点,汇聚节点通过USB接口把数据传到上位PC机.针对该方案的特点,对传感节点和簇首节点之间的无线传感器网络设计了一套协议,主要包含节点间的时间同步机制和节点申请入网竞争的时延退避机制.实验结果表明,该协议具有数据通信可靠性高、丢包率低的优点. A new human motion capture was proposed based on wireless sensor network. The system con- sists: sensor node, branch node and sink node. They work together in the form of clustering and layers. The sensor nodes adaptively connect to a branch node by wireless network. Each branch node manages its sensor nodes by time-division, besides, it carries on data-fusion and transmits the data to sink node. Sink node transmits the data to PC by USB. Considering the special feature of the system, a protocol was pro- posed which organizes the wireless network between sensor node and branch node. It consists mainly of time synchronization algorithm among sensor nodes and backoff time algorithm which is used when sensor nodes meet competition. Experimental results demonstrate that the protocol is adequately reliable and the lost of data packet is less in data communication.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第7期1314-1319,1332,共7页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2007AA01Z311) 浙江省科技计划资助项目(2010C13023)
关键词 无线传感器网络 人体运动传感数据捕获系统 时间同步机制 退避机制 wireless sensor network human motion capture device time synchronization protocol backoff protocol
  • 相关文献

参考文献12

  • 1HASENFRATZ J M, LAPIERRE M,SILLION F. A real-time system for full body interaction with virtual worlds [C] // Eurographics Symposium on Virtual Environment. [S. 1. 3 : The Eurographics Association, 2004 : 147 - 156.
  • 2LEE J,CHAI J,REITSMA P S,et al. Interactive control of avatars animated with human motion data [C] // Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. San Antonio : ACM, 2002: 491 - 500.
  • 3MAES P, DARRELL T,BLUMBERG B, et al. The alive system: wireless, full-body interaction with autonomous agents [J]. ACM Multimedia Systems, 1997, 5(2): 105-112.
  • 4BLACKBURN J, RIBEIRO E. Human motion recognition using isomap and dynamic time warping \_C]// Proceedings of the 2nd Conference on Human Motion: Understanding y Modeling,Capture and Animation. Heidelberg: Springer, 2007 : 285 - 298.
  • 5ISHIGAKI S, WHITE T, ZORDAN V B, et al. Performance-based control interface for character animation [J]. ACM Ihinsactions on Graphics, 2009, 28(3) : 1 - 8.
  • 6MIZELL D. Using gravity to estimate accelerometer orientation [Cj// Proceedings of the 7th IEEE International Symposium on Wearable Computers. Washington, DC: IEEE, 2003: 252.
  • 7LI Qi-lei, JIN Wen-guang, GENG Wei-dong. Virtual avatar control using motion sensors [J]. Journal of Computers, 2011,6(2) : 184 - 189.
  • 8LIU Hai,WAN Peng-jin,YI Chih-wei,et al. Maximal lifetime scheduling in sensor surveillance networks [Cj// 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Miami: IEEE, 2005: 2482 -2491.
  • 9SICHITIU M L. Cross-layer scheduling for power efficiency in wireless sensor networks [C] // 23th Annual Joint Conference of the IEEE Computer and Communications Societies. Hong Kong: IEEE, 2004: 1740 - 1750.
  • 10GANDHAM S, ZHANG Y, HUANG Q. Distributedminimal time convergecast scheduling in wireless sensor networks [C]// 26th IEEE International Conference on Distributed Computing Systems (ICDCS,06). Lisboa: IEEE, 2006: 50.

二级参考文献10

  • 1AKYILDIZ I F,SU W,SANKARASUBRAMANIAM Y,et al.Wireless sensor networks:a survey[J].Computer Networks,2002,38(4):393-422.
  • 2HUANLI P S,RAMAMRITHAM K.Scheduling messages with deadlines in multi-hop real-time sensor networks[A].Proc IEEE Real Time and Embedded Technology and Applications Symposium[C].San Francisco,CA,2005.415-425.
  • 3RAY S,CARRUTHERS J B,STAROBINSKI D.RTS/CTS-induced congestion in ad hoc wireless LANs[A].Proc Wireless Communications and Networking Conference (WCNC)[C].2003.1516-1521.
  • 4RHEE I,WARRIER A,XU L.Randomized Dining Philosophers to TDMA Scheduling in Wireless Sensor Networks[R].Computer Science Department,North Carolina State University,Raleigh,NC,2004.
  • 5HOHLT B,DOHERTY L,BREWER E.Flexible power scheduling for sensor networks[A].Proc the Third International Symposium on Information Processing in Sensor Networks[C].ACM Press,2004,205-214.
  • 6SICHITIU M L.Cross-layer scheduling for power efficiency in wireless sensor networks[A].Proc the 23th Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM[C].2004.1740-1750.
  • 7LIU H,WAN P J,YI C W,et al.Maximal lifetime scheduling in sensor surveillance networks[A].Proc the 24th Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM[C].2005.
  • 8WU H J,LUO Q,XUE W W.Distributed cross-layer scheduling for in-network sensor query processing[A].Proc the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM)[C].2006.180-189.
  • 9GANDHAM S,ZHANG Y,HUANG Q F.Distributed minimal time convergecast scheduling in wireless sensor networks[A].Proc the 26th International Conference on Distributed Computing Systems(ICDCS)[C].Lisboa,Portugal,2006,50-57.
  • 10任丰原,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(7):1282-1291. 被引量:1709

共引文献6

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部