期刊文献+

扩展到整数类型范围的模的模乘算法

Modular multiplication algorithm with modulus expanded to maximum of integer
下载PDF
导出
摘要 针对模乘运算的模超过一半整数位会发生算术溢出,不使用高精度运算就无法处理的问题,提出一种利用同余关系缩小乘积的模乘算法。通过将整数分解成两位数,按照两位数乘法的原理,将高位部分乘积用同余关系缩小,避免了乘法运算过程的算术溢出。结果表明,该方法可以将64位整数为基础的模乘运算的模扩大到62位。 The modular multiplication with the modulus greater than the value of half bits of the integer would result in overflow, and the high precision arithmetic operations have to be used, To avoid the use of high precision arithmetic operations, a modular multiplication algorithm including reduction by congruence was proposed. By decomposing the operands to double-digit numbers and reducing the product of higher digit by congruence, operation overflow was avoided. The experimental results show that the modular multiplication based on 64 digit integers can use the modulus of up to 62 digit.
作者 邵荣
机构地区 南京大学数学系
出处 《计算机应用》 CSCD 北大核心 2012年第9期2470-2471,2495,共3页 journal of Computer Applications
关键词 整数 模乘 同余 溢出 integer modular multiplication congruence overflow
  • 相关文献

参考文献11

  • 1HardyGH,WrightEM.数论导引[M].张明尧,张凡,译.北京:人民邮电出版社,2008.
  • 2CRANDALL R, POMERANCE C. Prime numbers: A computational perspective[ M]. Berlin: Spfinger-Verlag, 2001.
  • 3颜松远.计算数论[M].2版.杨思熳,刘巍,齐璐璐,等译.北京:清华大学出版社,2008.
  • 4李继国,余纯武,张福泰,等.信息安全数学基础[M].武汉:武汉大学出版社,2006.
  • 5朱怡健,朱敏,王健.计算机组成原理[M].南京:东南大学出版社,1994.
  • 6MONTGOMERY P L. Modular muhiplication without trial division[J]. Mathematics of Computation, 1985, 44(170): 519-521.
  • 7蒋晓娜,段成华.改进的蒙哥马利算法及其模乘法器实现[J].计算机工程,2008,34(12):209-211. 被引量:4
  • 8BLAKLEY G R. A computer algorithm for calculating the product AB modulo M [ J]. IEEE Transactions on Computers, 1983, C-32 (5) : 497 -500.
  • 9CHEN CHIENYUAN, CHANG CHINCHEN. A fast modular multi- plication algorithm for calculating the product AB modulo N [ J], In- formation Processing Letters, 1999, 72(3/4) : 77 -81.
  • 10KARL H. Fast division oflarge integers: a comparison of algorithms [ EB/OL]. [ 2011- 03- 23]. http://www.treskal.com/kalle/ex- jobb/original-report. pdf.

二级参考文献4

  • 1Walter C D. Systolic Modular Multiplication[J]. IEEE Transactions on Computers, 1993, 42(3): 376-378.
  • 2Kornerup R A Systolic, Linear-array Multiplier for a Class of Right-shift Algorithms[J]. IEEE Transactions on Computers, 1994, 43(8): 892-898.
  • 3Nedjah N, De M M L. Three Hardware Architectures for the Binary Modular Exponentiation: Sequential, Parallel, and Systolic[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2006, 53(3): 627-633.
  • 4Walter C D. Improved Linear Systolic Array for Fast modular Exponentiation[J]. IEE Computers Digit. Tech., 2000, 47(5): 323- 328.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部