期刊文献+

改进的GK聚类算法 被引量:4

Improved GK clustering algorithm
下载PDF
导出
摘要 针对传统GK聚类算法无法自动确定聚类数和对初始聚类中心比较敏感的缺陷,提出一种改进的GK聚类算法。该算法首先通过基于类间分离度和类内紧致性的权和的新有效性指标来确定最佳聚类数;然后,利用改进的熵聚类的思想来确定初始聚类中心;最后,根据判定出的聚类数和新的聚类中心进行聚类。实验结果表明,新指标能准确地判断出类间有交叠的数据集的最佳聚类数,且改进后的算法具有更高的聚类准确率。 Traditional GK clustering algorithm cannot automatically determine the number of clusters, and is sensitive to the initial cluster centers. According to these defects, an improved algorithm was proposed in this paper. Firstly, a new validity index, based on the weighted sum of separation between clusters and inter-cluster compactness, was proposed for the determination of the proper number of clusters. Then the idea of an improved entropy clustering was referenced to determine the initial cluster centers. Finally, the improved algorithm clustered the data sets according to the number of clusters given by the new index and the new cluster centers. The experimental resuhs show that the new index works well in situations when there are overlapping clusters in the data set, and the improved algorithm has a higher clustering accuracy.
出处 《计算机应用》 CSCD 北大核心 2012年第9期2476-2479,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61103129) 江苏省科技支撑计划项目(BE2009009)
关键词 聚类数 聚类有效性指标 初始聚类中心 熵聚类 GK聚类算法 cluster number cluster validity index initial cluster center entropy clustering Gustafson-Kessel (GK) clustering algorithm
  • 相关文献

参考文献5

二级参考文献44

共引文献75

同被引文献43

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部